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Summary 

The research has identified, characterized, and quantified various important domains of 
behavior in the nonlinear distortion and disintegration of injected liquid fuel streams. Var- 
ious liquid-stream configurations resulting from fuel injectors have been analyzed: conical, 
annular, and planar streams with and without swirl; twin-fluid and single-fluid atomizers. 
Linear and nonlinear theories of distortion and disintegration have been developed and have 
predicted initial stream break-up characteristics. Distinct regimes of ligament break-up and 
cellular break-up have been determined. Modulations of both liquid streams and gas streams 
have been studied as means of active control. The characteristics of two-dimensional cap- 
illary wave phenomena have been determined. The effects of impacting gas jets have been 
compared with the Kelvin-Helmholtz eff'ect of parallel jets. Pulsed gas jets have been shown 
to be more effective than gas jets as a break-up mechanism. The importance of the rate of 
forced stretching of the liquid stream compared to the rate of disturbance propagation in the 
stream (i.e., capillary wave velocity or characteristic viscous velocity) has been quantified; 
various regimes for the forced stretching have been identified and characterized. 

I. Introduction 

The research program focused on an extension of previous studies on planar and axisym- 
metric swirling and non-swirling annular liquid sheets. Effects of a surrounding gas-phase on 
the distortion and disintegration of the injected liquid stream has beeen analyzed for a prac- 
tical two-dimensional twin-fluid atomizer configuration. Directly (through a liquid-phase) 
or indirectly (via a gas-jet) modulated sinuous (anti-symmetric) and dilational (symmetric) 
film distortion have been analyzed and evaluated with respect to the atomization efficiency. 

Active control of liquid stream distintegration has been analyzed for three-dimensionally 
modulated swirling conical liquid films. The latter configuration is of practical relevance in 
state-of-the-art injector systems of combustion engines. In this context, a linear analysis of 
three-dimensionally distorting swirling annular liquid films has been performed in order to 
provide guidance for the studies of nonlinearly distorting swirling annular and conical sheets 
with three-dimensional disturbances.  Comparison between linear and nonlinear results for 
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the annular case quantifies the influence of nonlinear effects on film distortion and film 
breakup. 

In an effort to understand better the dynamics of the larger ligaments first detached 
from a continuous discharging liquid stream, an analysis of the dynamic stretching of a 
two-dimensional liquid film has been conducted. This analysis included the consideration of 
liquid viscosity and long range intermolecular forces in addition to surface tension and liquid 
inertia. 

In the following three sections, we will summarize major findings from the described 
analyses of: planar liquid films discharging from twin-fluid atomizers; the capillary stability 
of modulated swirling liquid films; and the dynamic stretching of a planar liquid bridge. The 
details of the analyses, results and literature reviews are provided in References 1 through 
5; since they are not yet in print, copies of References 1,4 and 5 are attached as addenda 
to this report. References 6 though 13 are conference papers and a book article, the former 
preceeding the primary journal articles (1-5). 

II. Planar Liquid Film Discharging From Twin-Fluid Atomizer 

The flowfield in the vicinity of a twin-fluid atomizer has been analyzed numerically. See 
Reference 1. Considered is a thin two-dimensional inviscid incompressible liquid film dis- 
charging from the atomizer centerline surrounded on both sides by gas jets that impact 
symmetrically (in phase) or antisymmetrically (out of phase) onto the discharging film. The 
value of the ambient pressure is manifested through the density ratio. Initial film distor- 
tion is enforced actively by: 1) modulation of the impacting gas jets (indirect or gas-phase 
modulation) with gas momentum components parallel and normal to the liquid stream, 2) 
modulation in the liquid-phase at the atomizer exit (direct or liquid-phase modulation) or 
3) direct liquid film modulation with superposition of continuous gas streams. The inves- 
tigation focused on gas-phase modulated films. Effects of different flow parameters on fllm 
breakup characteristics were studied by varying one of the flow parameters from a given 
base-case configuration. 

For direct (i.e., gas-phase) modulated films, energy input at the gas-inlet ports was found 
to be inadequate in identifying effective film rupture conditions, the latter being characterized 
by short break-up length and times at minimum energy input into the system. For the 
parameter domain surrounding the considered base case, film rupture was obtained more 
effectively by sinuous forcing and subsequent nonlinear sinuous-dilational mode coupling 
rather than by dilational forcing at the same average energy fiux into the system. Also, it 
was observed that intermediate gas-jet pulsing (without underlying continuous gas fiow) can 
yield the same or larger amplitude disturbances than obtained through wave growth from 
continuous jets at the same overall energy input into the system. 

Direct modulation of liquid-phase flow-parameters, i.e. axial or transverse fllm velocity, 
at the nozzle exit is more effective than gas-jet modulation, the latter transferring only a 
portion of the modulation energy onto the fllm. Computational results also indicate that 
for direct liquid-phase forcing, dilational modulation (i.e. modulation yielding dilational 
fllm distortion) is more effective in causing film rupture than sinuous modulations, while. 



as noted earlier, the opposite is true for gas-jet modulated liquid films. Also, for liquid- 
phase modulated films, admission of ambient gas streams significantly reduces sinuous mode 
wavenumbers whereas influence on wavelengths remains small for dilationally distorting films. 

For gas-phase modulated films, variations of Weber number, gas-jet-to-liquid-film mo- 
mentum ratio, gas-to-liquid density ratio and pulse period were considered and their effect 
on film distortion was analyzed. An increase in Weber number from its base-case value 
(i.e. from 10 to 25) resulted in stretched band-like films and a delay in film rupture due to 
reduced sinuous-dilational mode coupling. On the other hand, reduction in Weber number 
(i.e. from 10 to 5) resulted in smaller disturbance amplitudes and larger break-up time and 
length despite stronger nonlinear mode coupling manifested by the contraction of the film 
into fluid cylinders connected by thinner fluid films. Transverse deflection of the film center- 
line for a five-fold increase in density ratio was similar to the one observed for the increased 
Weber number case; however, fluid blob formation was still observed. 

A five-fold increase in vertical or parallel gas-jet-to-liquid-film-momentum ratio resulted 
in "immediate" film rupture caused by the dynamics of the impacting gas jets rather than by 
continuous growth of film disturbances downstream with energy transfer from the adjacent 
gas-streams. 

Variation in pulse period affects film distortion in two ways: It changes the amplitude of 
the initial film disturbances generated by the pulsed gas-jets, since increasing the pulse period 
provides more time for transverse film movement (due to one-sided gas-jet impact) before 
being counter-acted by an opposed gas jet. On the other hand, it alters the wavelengths 
of the disturbances generated on the film and therefore the gas-to-liquid energy transfer 
downstream from Kelvin-Helmholtz-type wave growth. 

At constant gas-to-liquid jet momentum ratio, higher ambient pressure conditions, i.e. higher 
gas-to-liquid density ratios, will affect film distortion and disintegration only through changes 
in the film dynamics or interface dynamics. If the ambient pressure or gas-to-liquid density 
ratio is increased while keeping the gas- and liquid-phase velocities constant, film distortion 
is determined by the interface dynamics directly but also indirectly through the changed 
gas-phase momentum influx which will affect the force balance at the interfaces. With in- 
creasing density ratio, larger sections of the discharging liquid film are being deflected by 
the impacting gas jets and film rupture time is greatly reduced. Rupture or rather film 
tearing occurs before the development of a wave structure on the discharging film. A similar 
behavior is observed if gas and liquid injection velocities are kept constant rather than the 
momentum ratio. The density-ratio effects described above are identical in the limit where 
the gas-jet-momentum influx is reduced to zero. In that case, i.e. for a liquid fllm moving 
through a quiescent gas, linear (and also nonlinear) theory shows that (temporal) growth 
rates of unstable sinuous (and dilational) waves present on the liquid film increase with 
increasing density ratio at fixed liquid Weber number. 

Details of the described analysis and of the results are provided in the first addendum 
(Reference 1) to this report. 



III. Capillary Stability of Modulated Swirling Liquid Films 

Linear and nonlinear analyses of modulated three-dimensionally distorting thin inviscid 
free liquid films discharging into a gas of negligible density have been presented. See Ref- 
erences 2, 3 and 4. The nonlinear numerical analysis uses a lubrication model reducing the 
three-dimensional problem to a system of two-dimensional unsteady equations. Linear the- 
ory for swirling annular films predicts that for We > 2 only one unstable wave is generated 
on the film due to its modulation at the nozzle exit. Depending on Weber number and film 
radius, linear growth rates for this unstable dilational mode wave might be larger for non- 
axisymmetric modes than for the corresponding axisymmetric case. However, for the consid- 
ered parameter range, maximum growth rates for a given Weber number and annular radius 
are still observed for the axisymmetric case. Modulation of multiple dilational mode waves 
at the nozzle exit allows for uniform breakdown of swirling and non-swirling annular films 
indicated by the generation of uniformly sized liquid volumes which are uniformly spaced 
and connected by thinner liquid layers. Film topology and break-up of three-dimensionally 
modulated conical films were discussed. Comparison with the corresponding swirling annular 
film shows that for sinuous film modulation, film divergence causes the separation of initially 
formed larger fluid blobs into a pair of smaller fluid volumes connected by an even thinner 
liquid layer. 

On clockwise swirling conical films, spiraling dilational and sinuous waves moving in the 
clock-wise direction increase in slope as the film thins out in the downstream direction. The 
slope of counter-clockwise propagating waves decreases with downstream distance. The de- 
scribed changes in slope can be attributed to a decrease in swirl velocity with increase in 
annular film radius downstream that results from the conservation-of-angular-momentum 
principle. Based on the location of the initial film rupture points and the thickness dis- 
tribution at the time of film rupture, characteristic break-up pattern have been identified 
for the cases with pure standing or travelling dilational or sinuous mode waves modulated 
at the nozzle. For mixed standing/travelling and sinuous/dilational wave modulation, the 
break-up pattern are modified or mixed versions of the patterns identified for the pure cases. 
For the investigated cases with travelling dilational or sinuous mode circumferential waves, 
superposition with the imposed axial wave results in an oblique wave spiraling clock-wise 
downstream on the annular or conical film. Here, initial film breakup occurs simultane- 
ously at various points with constant downstream distance. The perforations are expected 
to expand along the line of minimum film thickness which results in the formation of liquid 
filaments spiraling downstream in the counter-clockwise direction ("filament break-up"). On 
swirling annular films with superimposed dilational standing-wave modulations in the cir- 
cumferential direction, film rupture first occurs after the formation of larger fluid blobs and 
upstream just behind these larger fluid masses. Again, initial fllm rupture will take place 
simultaneously at various locations at the same downstream position. Subsequent expansion 
of the fllm perforations can be expected to generate a more or less circular pattern within 
each cell formed by neighboring fluid blobs. This type of fllm rupture can be characterized 
as "cellular break-up". The same break-up pattern can also be observed for non-swirling 
(pressure-stabilized) annular fllms and for swirling conical fllms with similar forcing con- 



ditions. However, due to film divergence the "cells" will stretch in the conical case and 
film thickness within the cells will be reduced. Therefore, expansion of the film perforation 
is expected to occur significantly faster than in the corresponding annular case. However, 
initial rupture of the film in the conical case is delayed. Analogous to the dilational case 
discussed earlier, initial film perforation for swirling annular films with modulated standing 
sinuous circumferential waves takes place just behind the larger fluid blobs. However, in this 
case the perforations are expected to propagate in the circumferential direction at a (more 
or less) constant downstream distance, ultimately resulting in the detachment of fluid rings 
with pronounced thickness fluctuations in the circumferential direction ("ring break-up"). 
The similar standing wave sinuous mode modulation imposed onto the conical film geometry 
yields a "filament break-up" pattern. The filaments are spiraling clock-wise in the down- 
stream direction. In contrast to the single wave modulation, breakup of these filaments will 
be greatly influenced by the existing non-uniform mass distribution along the filaments. 

Details of the three-dimensional analysis and the preceeding axisymmetric analysis of 
swirling annular and conical films are provided in References 2, 3 and 4. Reference 4 is not 
yet in print so a copy is provided as second addendum to this report. 

IV. Dynamic Stretching of A Planar Liquid Bridge 

A thin incompressible viscous planar free liquid film in a void and under zero gravity was 
analyzed by means of the previously developed reduced-dimension (lubrication) approach 
extended to include liquid viscosity and long-range intermolecular forces. Linear analysis 
focused on films with harmonic modulations in the axial film velocity enforced at the ends 
of the planar bridge. Effect of changes in the problem parameters on the overall distortion 
characteristics of the film were discussed. Nonlinear film distortion and break-up was in- 
vestigated for the case of temporally increasing velocity at the end of the film resulting in 
continuous film stretching eventually leading to film rupture. Implementation of the em- 
ployed numerical model was validated for the linear limit by comparison with the analytical 
linear solutions and for harmonically modulated film-end velocities. 

The importance of the film stretching rate in comparison to either the capillary wave 
velocity or the characteristic viscous velocity has been demonstrated. If the stretching rate 
is large, the distortion signals are slow in reaching large distances from the forced end; 
so distortion is confined to a smaller portion of the sheet. For small stretching rates, the 
distortion is significant over a larger portion of the film. 

For films with an initial length-to-thickness ratio of 0(10) and with a time-scale for 
film-end acceleration (from zero to maximum pull velocity) comparable to the propagation 
time of capillary waves from film end through film center, various distinct film topologies 
were observed, depending on Weber number and Reynolds number. Here, film topology is 
typically characterized by three distinct regions, i.e. a film wedge forming at the pulling 
end(s), the film center region and a transition region. The size and shape of these regions 
greatly depends on the particular case under investigation. 

For cases with length-to-thickness ratio of O(IOO) information on the acceleration of the 
film ends does not reach the film center region. Here, evolution of film topology is similar 



for all the considered Weber number and Reynolds number combinations; with a more or 
less undisturbed film center region smoothly transitioning into a narrow liquid wedge at the 
pulling end. For cases with low film-end acceleration, film rupture is significantly delayed 
resulting (in all the considered cases) in a significantly stretched film prior to rupture with 
or without significant amounts of fluid remaining in the film center region. 

Nonlinear film distortion has also been investigated for the continuously compressed 
planar film bridge, illustrating the relevance of the film bridge analysis for the contracting and 
stretching of a free planar film such as those found in the atomization process of liquid fuels 
in typical gas turbine combustors. Film distortion characteristics observed for continuously 
compressed planar films conform with observations made by other authors for the similar 
case of contracting free liquid films. 

Details of the described stretching-film analysis are provided in Reference 5; since it is 
not yet in print, a copy is attached as the third addendum to this report. 
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ADDENDUM I 

PF # 2326 

Disintegration of Planar Liquid Film Impacted by 

Two-Dimensional Gas Jets 

C. Mehring") and W. A. Sirignano'*) 

Department of Mechanical and Aerospace Engineering, University of California, Irvine 

(July 23, 2002) 

Abstract 

The distortion and break-up of a thin planar liquid film impacted by two 

gas jets while discharging from a twin-fluid atomizer is studied numerically. 

The gas momentum vector has components normal and parallel to the liquid 

stream. Viscosity and compressibility are neglected in both the liquid phase 

and the gas phase. The reduced-dimension (lubrication) approximation is 

employed to describe the nonlinear distortion and breakup of the thm fihn. 

The gas-phase dynamics are modelled by usmg a boundary-element-method 

formulation. For the considered parameter range and for a given energy ex- 

penditure, direct modulation of liquid-phase velocities at the nozzle exit is 

found to be more effective m causing fihn rupture than mdirect modulation 

via adjacent impacting gas jets. In the former case, dilational fihn modu- 

lation results in shorter breakup lengths than sinuous modulation. On the 

other hand, for gas-jet modulated films, sinuous mode forcing is more effec- 

tive than dilational forcing for the same energy input. Co-flowing gas streams 

significantly alter wavelengths and ampUtudes of film disturbances generated 

by direct film modulation. Large ratios of gas-jet momentum to liquid-film 

momentum result m "immediate" film ruptmre in response to the dynamics 



of the impacting gas jets, whereas for lower ratios films disintegration occurs 

further downstream after continuous growth of the initial distiurbances. Film 

distortion is characterized by the formation of fluid blobs or long band-like 

films depending on Weber number values and density ratio. 

Typeset using REVTfeX 



I. INTRODUCTION 

In the past, free liquid films have not been analyzed only for their intriguing scientific 

substance but also due to their relevance for a wide variety of technological applications, 

including the formation of Uquid sprays from fluid films which discharge from so-called at- 

omizer nozzles.^ The maimer in which these films disintegrate into droplets depends upon 

the type and geometry of the atomizer as well as on the operating conditions. One com- 

mon type of atomizer is described as the twin-fluid atomizer, where the interfaces of the 

discharging liquid film are subjected to neighboring gas streams. Here, the main cause of 

film instability is interaction of the film with the surrounding gas flow either through gas-jet 

impact or continuous growth (amplification) of film disturbances via energy input from the 

neighboring gas streams. 

Subsequently, we review previous work on discharging free liquid films in an ambient 

gas phase; some references are also provided considering theoretical or numerical analyses 

of periodically disturbed infinite films (also with the effect of an ambient gas considered). 

In subsection A, we review analyses dealing with films under steady discharge and ambient 

conditions (or boundary conditions). Subsection B addresses previous work on discharging 

liquid films with modulations enforced onto the liquid phase. In subsection C, we describe 

the flow configuration considered within the present work. 

A. Steady-State Discharging Films 

Until the recent past, steady-state operational conditions were imposed onto the pre- 

scribed atomization systems. Accordingly, the majority of previous experimental and an- 

alytical work focused on the aerodynamic stability of these films under steady free-stream 

and boundary (e.g., inflow and outflow) conditions. 

Arai &: Hashimoto^'^ and Hashimoto k Suzuki^ presented experimental results on the 

three-dimensional breakdown of a planar liquid sheet in a high-speed co-current uniform 



gas stream under steady-state conditions; more extensive analyses of a similar configuration 

were later conducted by Mansour &; Chigier,^>^ by Stapper et alJ'^ and discussed by Feman-. 

des et al.^. In Ref. 9, the authors illustrate that eflFectiveness of atomization depends not 

only on gas-to-liquid momentum ratio but also on film thickness, which is attributed to the 

observation that, for effective film disintegration, the characteristic length scale of pertur- 

bations should be of the order of the film thickness. The authors also observe that, for high 

liquid momentum, the effect of viscous shear on film breakup is confiined to a thin region 

near the gas-liquid interface. In this case, atomization can be improved by superposition 

of artificial film modulations which can cause disturbances of the inner core. Even though 

external liquid and gas-phase modulation via piezoelectric transducers or loudspeakers is 

described in Ref. 9, no results have been presented under such forcing conditions. 

Within their work, Aral &; Hashimoto^ also presented a perturbation analysis of the 

corresponding inviscid three-dimensional boundary-value problem. A linear analysis based 

on the Orr-Sommerfeld equation was also attempted by Hashimoto &c Suzuki.^ Ibrahim k. 

Akpan^° presented a three-dimensional linear analysis of a periodically disturbed planar 

viscous liquid sheet moving in an inviscid gas medium and with axial and transverse sheet 

disturbances. 

Kawano et al}^ investigated annular liquid films discharging from a two-fluid atomizer 

under various steady-state conditions. The authors also provided a linear temporal analysis 

for inviscid incompressible annular films subject to unequal gas velocities on both sides of 

the annular film.  A similar, experimental analysis was reported later by Berthoumieu et 

Few nonlinear analyses of planar sheets with surrounding gas streams have been reported. 

Rangel and Sirignano" and later Lozano et al}"^'^^ employed discrete-vortex methods to 

describe the nonlinear distortion and rupture of two- or three-dimensionally distorting liquid 

films in a co-flowing gas stream. 

The nonlinear calculations conducted in Ref. 14 revealed that: 1) oscillating (stable), 

sinuous modes exist at gas-to-liquid density ratios of order 1, and 2) sinuous distortion may 
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result in ligaments interspaced by half of a wavelength, whereas dilational distortion may 

result in ligaments interspaced by one wavelength. These break-up features were already 

described by Dombrowski & Hooper^^ and identified later by Jazayeri & Li^®. 

In Ref. 17, aerodynamic growth of antisymmetric (sinusoidal) streamwise sheet distur- 

bances with superimposed symmetric (dilational) or antisymmetric disturbances in the trans- 

verse direction was studied, in order to better understand the presence of transverse and 

longitudinal filaments observed in liquid sheet air-assisted atomization experiments. For 

both initially sinusoidal or dilational transverse sheet disturbances, flattening of the sheet in 

the transverse direction is reported. The formation of streamwise tubular sections with point 

edges is predicted when both air/liquid interfaces touch each other at points'interspaced by- 

one wavelength in a plane perpendicular to the main flow (i.e. streamwise) direction. As 

illustrated, and due to the fact that gas and liquid velocities are assumed to be initially 

oriented in the streamwise direction, the transverse perturbation grows at a slower rate than 

the streamwise one whose initial growth is exponential (by linear theory). Accordingly, the 

transverse perturbation growth rate might be insufficient to generate streamwise filaments. 

In this context, oblique waves have been studied^^ and were found to contribute to the evolu- 

tion of a finite amplitude transverse wave starting from infinitesimal perturbations. Surface 

tension efiiects and edge effects were addressed very briefly in Ref. 18. 

B. Modulated Discharging Films 

More recently, atomization systems are being developed that aim at an active control 

of the film disintegration or overall spray formation process in order to optimize certain 

parameters within in the overall system (e.g., NOi reduction in spray combustion of fossil 

fuels^^). Several experimental and theoretical analyses have addressed this interest. 

The spatial stability of thin liquid sheets subject to forced vibrations applied to the nozzle 

was first investigated by Hagerty k Shea^^ and later by Crapper, Dombrowski k Pyott.^° The 

latter authors used the dispersion relation derived by Squire,^^ in order to analyze the spatial 



(aerodynamic) growth of sinuous disturbances. Comparison of the theoretical results with 

experimental observations revealed considerable discrepancies: 1) unstable waves were found 

at frequencies where linear inviscid theory (based on spontaneous growth of infinitesimally 

small perturbations) predicts stable waves, and 2) the wave growth saturates (i.e., the wave 

amplitude eventually no longer grows) as the waves propagate away from the orifice, even 

for wavelengths which are unstable by the employed linear theory. The latter phenomenon 

was attributed to the formation of vortices cast off from the wave crests and moving into 

the troughs. 

After Crapper et al,^° Asare, Takahashi & Hoffinan^^ also investigated the stability of 

liquid sheets, harmonically forced at the nozzle (sinuous disturbances only). Their experi- 

mental results (for thin and thick sheets and variable air pressures) agreed well with linear 

theory^^'^^ if the disturbance amplitudes were small and if the observations were made near 

the nozzle exit. As a result of nonlinear effects, deviations between experimental observa- 

tions and linear theory were more pronounced at larger downstream positions and for higher 

forcing amplitudes. Similar to the observations made by Crapper et a/.,^° the wave envelope 

amplitude appeared to saturate at large falling distances, i.e. where the sheet jets begin 

to break up. Asare et al?^ also provided a simplified trajectory theory based on the force 

balance for a fluid particle in the crest of a propagating wave. The initial wave envelope 

amplitudes predicted by this simplified theory agreed well with experimental results and the 

employed linear theory. 

The questions on the discrepancies between linear theory and experimental results raised 

in Refs. 20 and 23 were subsequently addressed in Refs. 24 and 25. Crapper, Dombrowski 

& Jepson^"* presented a linear analysis for both sinuous and dilational waves on thin viscous 

liquid sheets in a viscous gas flow (with focus on sinusoidal waves with wavelengths much 

longer than the sheet-thickness). They found that liquid viscosity has no effect on the initial 

wave growth. Furthermore, gas viscosity was found to extend the region of instability over 

a greater range of frequencies than that given by the inviscid theory; which, as stated in 
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Ref. 24, might explain the discrepancy with respect to this issue found in Ref. 20. dap- 

per et al.^'^ also observed that by their linear viscous theory (i.e. viscous gas and liquid 

phases), a maximum growth rate does not always exist, which (as stated) indicates that, for 

these situations,-the experimentally observed waves <:annot be the fastest growing as hith- 

erto suggested (for example by Sqiiire^^) but must be imposed on the sheet by some other 

means, e.g. by a natural frequency of the apparatus. The importance of nozzle vibrations in 

practical applications was subsequently demonstrated by Crapper &; Dombrowski.^^ Capil- 

lary waves on planar liquid sheets emanating from a nozzle or atomizer were also observed 

and mvestigated experimentally by Hashimoto & Suzuki* and held responsible by Clark 

&r Dombrowsid^^ for the prescribed discrepancy between their theoretical (infinite-sheet) 

analysis and experimental results for fan sheets. 

More recently, an experimental study on modulated discharging films was also presented 

by Chung et al?'' The authors provided an extensive study on disintegrating conical liq- 

uid films subject to piezoelectric transducer modulations inside the nozzle. The effect of 

transducer modulation on liquid film disintegration was studied for different fluid viscosi- 

ties, driving frequencies and input perturbation powers. An optimum driving frequency was 

identified at which liquid sheet breakup length is shortest. Increased liquid viscosity was 

found to render liquid modulation less effective delaying liquid film disintegration. Higher 

input modulation power enhanced liquid disintegration. The authors suggest that break-up 

length is a function of cosh~^ of input power. 

The linear analysis of a sinuous and/or dilationally distorting viscous liquid film in a 

co-flowing ambient inviscid gas has been presented recently by Mitra et al?^ For large 

Weber numbers (and by using Caster's relation^^), the authors extend their analysis to 

liquid films discharging from a nozzle or atomizer. Film breakup lengths and interface 

profiles are reported for various combinations of Reynolds number, Weber number, gas- 

to-liquid density ratio, gas-to-liquid velocity ratios and phase angle between sinuous and 

dilational mode disturbances; always assuming the presence of sinuous and dilational mode 

waves with maximum growth rates. Computational results are compared with experimental 



observations made by Jazayeri and Li,^° indicating the inadequateness of their linear theory 

for large amplitude disturbances, i.e. when nonlinear effect become important. In fact, 

film breakup as predicted by the described linear analysis solely depends on the dilational 

mode and is independent of any sinuous mode disturbances. However, large amplitude 

sinuous mode disturbances have been shown in Ref. 37, as well as by Jazayeri and Li^^ to 

cause significant dilational film distortion due to nonlinear sinuous-dilational mode coupling. 

Consequently, any predictions for film break-up length based on linear theory has to be 

considered with great caution. 

Similar to the described linear analysis for viscous films, Jazayeri and Li^^ also extended 

their nonlinear analysis of Ref. 16 on inviscid liquid films. As in Ref. 30, the authors 

used Caster's relation^^ to transform the results of their temporal analysis into a spatial 

analysis describing the nonlinear distortion of a discharging liquid film into a quiescent 

ambient gas. Based on this transformation, the authors determine nonlinear film break- 

up lengths under various operating conditions. Analogous to Ref. 30, the results from 

the perturbation expansion of Ref. 31 for the spatially developing film always assume the 

presence of only the dominant wavenumber at the nozzle. The results obtained for the 

spatially developing film by using the perturbation analysis of Ref. 31 are only valid for large 

Weber numbers and liquid films that discharge into an overall unrestricted quiescent ambient 

gas. Practical twin-fluid atomizers do not conform to this assumption. In context with the 

large Weber number assumption, it is worthwhile to notice that dilational capillary waves on 

thin films are dispersive in nature with increase in wave velocity for decreasing disturbance 

wavelength.^^ Consequently, for finite Weber number values, propagation velocities of shorter 

wavelength disturbances will always deviate from the film discharge velocity. Also, results 

for spatially developing films obtained from a temporal analysis via transformation using 

Caster's relation^^ do not consider the physical constraints imposed at the nozzle exit in a 

practical situation. 

The nonlinear analysis presented here differs from the analysis presented in Ref. 31. The 

employed nonlinear model is based on the assumption of thin films and is exact in the limit 
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of an infinite value for the ratio of disturbance wavelength to undisturbed film thickness.^^ 

Considered is the initial-and-boundary value problem of a semi-infinite sinuous and/or dila- 

tionally distorting inviscid liquid film discharging from a practical twin-fluid atomizer (with 

adjacent gas-stream) into a planar channel. Liquid film modulation is enforced by imposing 

forcing conditions onto the discharging gas streams which impact the liquid film from both 

sides at a specified angle. Direct modulation of the discharging film via modulation of the 

liquid-phase velocity at the nozzle exit is also considered. A more detailed description of 

the employed model is given below. 

It should be noted here, that the active control and break-up of cylindrical liquid jets via 

liquid phase modulation has a longer history than the analysis of modulated liquid films. The 

first detailed experimental and (linear) analytical studies of modulated discharging liquid jets 

were conducted by Pimbley,^^ Pimbley and Lee^^ and Bogy^^ motivated by its application 

in ink-jet printing. More recently, Hilbing and Heister^^ analyzed modulated discharging 

nonlinear liquid jets in context with the likelihood of droplet recombination downstream 

from the initial jet pinch-off point. Modulation of microjets has currently received attention 

in context with micro-dispensing systems for pharmaceutical products and in context with 

the formation of precision powders having very uniform particle size. For a more complete 

review of previous theoretical work on free liquid films and jets, the reader is referred to 

Ref. 43. 

C. New Configuration under Investigation 

The present study is a continuation of previous work by the authors.^^ In particular, 

the present analysis considers the general sinuous and/or dilational nonlinear evolution of a 

thin semi-infinite planar liquid film downstream from a twin-fluid atomizer and under the 

influence of capillary and aerodynamic effects. The numerical model employs the reduced- 

dimension approach of Ref. 37 to describe the thin planar sheet and a Boundary-Element 

Method (BEM) formulation^^ for the inviscid incompressible gas streams impacting onto the 



film from both sides of the injector centerline. 

The misteady Bernoulli equation in combination with the boundary-element method 

is used to determine the instantaneous gas pressure at the liquid-gas interfaces which is 

needed within the lubrication equations governing the liquid phase. The use of a discrete 

boundary-element method for the gas phase allows the consideration of practical applications 

where Uquid streams are injected into a gaseous flowfield with its own physical constraints 

or boundary conditions. The latter is of particular importance with regard to the compli- 

cated flowfields within and/or around fuel injection elements or atomizers used for spray 

combustion purposes, e.g. prefilming airblast atomizers. 

The particular injector configuration considered in this work is shown in Fig.l. 

A thin liquid film is injected from a two-dimensional slit-nozzle located in the symmetry 

plane of a two-dimensional twin-fluid atomizer. The liquid film is impacted on both sides by 

gas-jets discharging from two inlet ports angled with respect to the film discharge plane at 

an angle a. Both liquid film and gas streams are injected into a two-dimensional channel. 

The width of the gas-jet inlet ports is s, the channel width is H and the width of the liqmd- 

phase nozzle is h. For the analysis, the coordinate system is fixed to the nozzle exit with the 

T/—axis located within the film discharge plane and the x-axis coinciding with the symmetry 

plane of the atomizer. For the spatially developing semi-infinite liquid film, capillary waves 

generated by the impacting gas jet do not reach the outflow boundary of the computational 

domain during the computation. 

The specification of liquid-phase boundary conditions at the nozzle exit follows previous 

work by the authors on discharging semi-infinite films without gas-phase effects.^^ In Ref. 

37, liquid film modulation was imposed only locally at the nozzle (x = 0). The number of 

boundary conditions specified at the nozzle was chosen according to linear theory and by 

employing the Sommerfeld radiation condition. The latter condition excluded any wavenum- 

ber solution with negative group velocity that resulted from the specific forcing frequency. 

Within the present investigation, the presence of a non-zero density incompressible ambient 

gas and/or impacting gas jets downstream from the nozzle exit plane allows generally for 
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capillaxy waves with negative group velocities effectively resulting in upstream energy trans- 

port on the film. However, within this work liquid-film injection velocities are assumed high 

enough so that upstream energy transport and upstream wave propagation across the nozzle 

exit plane can be neglected, eliminating the need to specify additional reflective boundary 

condition at this boundary. Nevertheless, it should be recalled that the incompressibility 

assumption within the gas-phase implies that the speed of sound is much larger than the 

the wave speed of any capillary waves observed on the liquid. So signals may propagate 

upstream (and downstream) through the gas. 

. Certain boundary conditions have been imposed within the gas phase. Gas-phase velocity 

components normal to solid-walls have been set to zero (i.e. along the walls of the discharge 

channel and the atomizer). This implies that, in the boundary-element analysis, the gradient 

of the velocity potential normal to these boundaries is zero. Parallel outflow conditions have 

been specified within the gas-phase. In particular, the value of the velocity potential has 

been_ prescribed as 0 = 0 at the nozzle exit on both sides of the liquid film. 

Gas-jet injection at the two gas-jet inlet ports has been specified, in general, according 

to 

°° t t 
Ug;i,2it) = X^ Ug.fi sin^ [ir{— - (2n + ne.1,2))]   for   (2n + ne-i^) < ;^ < (2n -1-1 -I- ng.1,2) 

n=0 -^P -'P 

and   Ug-x^if) = 0     ,     otherwise. (1) 

Here Tp denotes the pulse period and subscripts 1 and 2 refer to the lower and upper gas 

jets, respectively. The prescribed forcing function indicates that a gas-jet pulse of period 

Tp at either inlet ports is followed by an equal-time period where there is no pulse for that 

particular port. Parameters ng.1,2 describe any time delay or phase-shift in the pulsing of 

the gas jets at the lower (1) and upper (2) injection ports. In this analysis ng-i = 0 always, 

whereas ne-2 ranged from 0 to 1. Note that gas jet pulsation with ng^i = 71^,2 = 0 will always 

result in dilational film deformation whereas ne,i = 0 and ng^2 = 1 will generate initially 

(predominantly) sinuous film distortions. 
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II. GOVERNING EQUATIONS 

With the prescribed boundary conditions, the solution to Laplace's equation within the 

gas-phase is determined if the instantaneous location of the liquid-gas interface and the 

velocity component normal to this interface is known. More precisely, using the discrete 

boundary-element method, the solution for the gas-phase velocity potential 0p;i,2 at a given 

point within or on the boundaries of the gas-phase domains in Fig. 1 is determined by defining 

contributions of sources from all nodes along the boimdary of each domain. Note that for 

dilational, i.e. symmetric, film disturbances a boimdary-element solution has to be obtained 

only for gas-phase region on one side of the liquid film. The flowfield on the opposite side 

of the filni is then merely a mirror image of the calculated one. However, for more general 

film disturbances, boundary-element solutions have to be computed simultaneously for both 

gas-phase regions, i.e. above and below the thin film. 

The BEM approach adopted here to solve the gas-phase flow field follows the method 

proposed by Brebbia.^^ 

The integral representation of Laplace's equation for the gas-phase velocity potential 

^5; 1,2 may be written as 

dG 
dn 

where (i)g-x2{fi) is the potential at a point fj in the gas-phase region below (1) or above (2) 

the liquid film, ri,2 denotes the boundary of the particular domain, gi,2 = Q^g\\,ilQ'r^ is the 

gradient of ^g-xi on ri,2 normal to the particular boundary, a is a constant (for a given 

node), and G is the free-space Green's function corresponding to the governing equation. 

Since the above equation involves an integration only around the boundary Fi and/or F2, 

we need not discretize the entire gas-phase domain. It is presumed that either <^g-xi or 91,2 

is specified at each 'node' on each boundary while the other quantity is returned as part of 

the solution. Details regarding the BEM solution procedure can be found in the appendix of 

Ref. 39, together with validation simulations of the employed method for two steady-state 

problems. 
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Coupling between the gas and liquid phase is described through kinematic and dynamic 

boundary conditions at the phase interface. Kinematic conditions are represented by the 

instantaneous interface locations and the normal velocity of the interfaces; this affects the 

solution-for-the velocity potential in the gas phase above-and below the thin film. On the 

other hand, the flowfield in the gas phase impacts the liquid film distortion through the 

dynamic condition at the interfaces, requiring that the pressure inside the liquid balances 

with the pressure on the gas side of the interface combined with the capillary pressure. 

The equations governing the nonlinear film distortion are Eqs. (2.10) through (2.16) of 

Ref. 37, which can be combined to yield is:> 

dy ^ d }_..     _ 
(2) 

^     ,     ^^= ^    d(Pg,+ +Pg-) 
dt       dx 

dv    _dv 
dt       dx 

2p dx 

a_{d_ 
^2p\dx 

u^f-^v^^^_f_fy 
dx^ dx^ 

2ay 
ydx ^^+ + ^-^9x2+      2      dx^ 

P 

+ 
py [ 

y 

^^^^^-hx-^^.    2     dx\ 

(3) 

(4) 

_ _ ^    _dy_ 
dt       dx (5) 

where /+ and /_ are given by 

f± = 1 + 
'^\    ,dy_dy_l fdy^ 
dx)      dx dx     A\dx, 

-3/2 

(6) 

with additionals term appearing on the right-hand-side of Eqs. (3, 4) due to the nonzero gas 

pressures Pg^+ and Pg- along the upper (4-) and lower (—) interfaces. In the above equations 
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y is the sheet thickness, y is the sheet-centerline location in the transverse direction, and u 

and V denote the axial and transverse fihn velocity averaged over the fihn thickness. The 

underbraced terms in the original Eqs. (3, 4) identify nonlinear coupling terms between 

sinuous and dilational film disturbances (or capillary waves) for the general nonlinear case 

resulting from capillary forces. Note that in the nonlinear case f± depends on both y and 

y (see Eq. 6). Mode coupling is also influenced by the surrounding gas flow represented in 

Eqs. (3) and (4) by the gas pressures Pg^+ and pg- along the gas-liquid interfaces. Eqs. (2) 

through (5) are valid for thin inviscid incompressible liquid films. Here "thin" implies that 

the film thickness h is small compared to the wavelength of any disturbance appearing on 

the film interfaces. A concise derivation of Eqs. (2 - 5) has been presented in Ref. 39 and in 

Ref. 37, as well as in Ref. 40 for the more general case of thin annular films. For dilationally 

distorting films, we have y = 0,v = 0 and pg,+ = Pg- so that Eqs. (4) and (5) are identical 

to zero with /± = [1 + {dy/dxf/A]-^''^ in Eq. (3). Eqs. (2, 3) and Eqs. (4, 5) are decoupled 

by linear analysis, governing linear dilational mode disturbances (i.e. u and y) and linear 

sinuous mode disturbances (i.e. v and y), respectively. 

The unsteady Bernoulli equation provides a relationship between the pressure in the gas 

phase P3;i,2 and the velocity potentials ^551,2 governed by V^0g;i,2 = 0: 

where p°.i 2 = fctn(i) is the stagnation pressure ia the gas below (subscript 1) and above 

(subscript 2) the liquid film. The gas densities on both sides , Pj,i and pj,2, were assumed to 

be equal; the static pressure at the outflow boundary has been prescribed at a constant value 

(referenced at 0 Pa). Consequently pj. 1^2 = \{^<i>'^l2f i^ Eq. (7) since (^^/a = 0- Evaluation 

of Eq. (7) at the liquid-gas interfaces governs the gas pressure Pg,±. The adjustment of 

Po;i,2(^) is employed in order to prevent transverse film deflection at the outflow boundary, 

particularly for non-symmetric, i.e. mixed or sinuous mode film pulsing due to the non-zero 

pressure difference across the undisturbed film. Note that properly prescribed variations 

in the outflow static pressure or total pressure in both gas regions could be used to model 
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the effects of combustion instabilities (i.e. acoustic resonant oscillations) on the breakup 

of the injected liquid fuel film. Such an analysis has already been presented by Hilbing et 

al.'*^ for finite length liquid jets using a boundary-element method to describe both liquid 

and gas phases. A similar analysis for the case of semi-infinite thin planar films would 

require modifications of the specified outfiow conditions and possibly inflow conditions for 

the discharging liquid film. 

The kinematic interface condition governing the motion of the phase interface is implicit 

in Eq. (2) which governs mass continuity for the liquid phase. 7^ii ■ 

PromEq. (7) we observe that, in order to evaluate the local gas pressure, 9^551,2/^ has 

to be known along the interface. Here, the local values of this time-derivative are obtained 

explicitly using previous values of ^351,2 at the interface and at the same downstream location. 

This corresponds to the analysis presented by Spangler, Hilbing and Heister,^^ who analyzed 

the two-dimensional planar sheet problem by using a BEM for the solution of Laplace's 

equation in both gas and liquid phases. Those authors tracked the motion of the nodes at 

the liquid-gas interface only in the direction vertically to the liqtud stream or jet. 

Eqs. (2) through (7) have to be integrated in time which also includes the simultaneous 

solution of Laplace's equation for (l)g.i and ^552 at each time step. The procedure begins 

with the solution of Laplace's equation for (^<,;i,2 by using the current interface locations 

and the velocity normal to the interfaces, i.e. 50g;i,2/9n. The solution gives the values 

of the velocity potentials <l>g.i and <^p;2 along the two interfaces. This information permits 

the updating of the gas pressures Pg,± using Eq. (7). The newly determined gas pressure 

can now be used within Eqs. (3) and (4) which m combination with Eqs. (2, 5) is solved 

to update the interface locations (including the locations for the BEM surface nodes) and 

the velocity components normal to the interfaces. By repeating this procedure at each time 

step, the film shape can be determined at all times prior to droplet pinch-off. The prescribed 

solution procedure, illustrated schematically in Fig. 2 for the dilational case, closely follows 

the procedure employed by Spangler, Hilbing and Heister^^ who analyzed the nonlinear 

evolution of an axisymmetric liquid jet by using a boundary-element method (BEM) for the 
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solution of Laplace's equation in both gas and liquid phases and by emplojdng the unsteady 

Bernoulli equation in both phases along the interface. 

Note that the solution procedures employed for the gas-phase (discrete BEM) and the 

liquid phase (reduced-dimension analysis) solve for nondimensional quantities. Both solution 

methods use the thickness of the film as characteristic length for the nondimensionalization. 

The characteristic velocity for the reduced-dimension analysis of the liquid film is the capil- 

lary velocity tt, = Ja/i^pih) which eliminates the Weber number from the nondimensional 

forms of Eqs. (3, 4). u, is the velocity at which small amplitude sinuous capillary waves 

travel along a planar liquid fihn.^^ For the BEM solution of the gas-phase velocity poten- 

tial, and the unsteady Bernoulli equation in the gas phase, the maximum gas-jet injection 

velocity is used as the characteristic velocity. 

With the prescribed non-dimensionalization, the following (nondimensional) flow pa- 

rameters are to be considered: (1) The ratio of maximum gas jet momentum to liquid film 

momentum M = pgU^Qs/{piufh), (2) the nondimensional square of the film injection veloc- 

ity or liquid-phase Weber number Wej = piufh/a, (3) the gas-to-liquid density ratio Pg/pi, 

and three geometric parameters, i.e. the gas jet injection angle a, as well as s/h and H/h 

denoting the ratios of gas-jet inlet port width or discharge channel width to the thickness 

of the undisturbed liquid film, respectively. Within the present analysis the parameters M 

and a have been replaced by M|| = M cos a and Mj_ = M sin a representing the maximum 

values of the gas jet components parallel and perpendicular to the undisturbed liquid film. 

The former is relevant for the initial generation of film disturbances, while the latter can 

cause amplification of an existing disturbance through Kelvin-Helmholtz wave growth. 

From Eqs. (3, 4) we see that, within the considered inviscid model, the gas-phase influ- 

ences the liquid-phase dynamics solely through the static pressure at the interfaces Pg^±. Its 

nondimensional value p*gj. = Pg,±/[pi u^) within the nondimensional form of Eqs. (3, 4) can 

be expressed in terms of the nondimensional pressure pf^± = pg^±/{Q.hpgV?g.Q) obtained from 

the solution of the unsteady Bernoulli equation along the interface, 
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The nondimensional paxameter of interest in this expression is the product formed by the 

gas-to-liquid density ratio pgjpi and the ratio between the maximum gas jet velocity Ug^ and 

the capillary velocity Us on the liquid film. For practical applications this product is of the 

order one. In particular, for a water sheet with a thickness of 0.2mm at 20° C (i.e. a = 0.0727 

N/m and pi = 998 kg/m^), and a co-flowing gas stream with pg = 1.2 kg/m^ moving at 15 

m/s, the prescribed nondimensional value is PgU^-o/ipiuf) = 1-5. PgU^jo/(piu^) = 2M Wej h/s 

represents the ratio of aerodynamic forces exerted on the liquid-gas interface to capillary 

forces. As a parameter rielevant to the gas/liquid field governing equations, it does not 

contaia any geometrical parameters with exception of the film thickness. Due to the different 

choices made for the characteristic velocities in the nondimensional equations for the gas 

and liquid phases, Ug-o/ug is another nondimensional parameter relevant to the problem. 

However, since Ug.fi/U3 can be expressed in terms of Wej, M, s/h and pg/pu the density 

ratio Pgjpi has been chosen as the second (geometry independent) nondimensional quantity 

relevant to the field equations. Note that, if u^jo # u,, the same nondimensional time-steps 

for the numerical procedures employed to solve the Uquid- and gas-phase equations implies 

different physical time steps. Consequently, and since the capillary velocity Uj is in general 

smaller than the velocity Ug-^, subiteration for the solution of the liquid-phase equations is 

needed (if the same nondimensional time-step is used) or the nondimensional time-step for 

the liquid-phase analysis has to be adjusted to the one employed for the BEM solution of 

the gas phase. Note that parameters pg/pi and pgU^.Q/{piuf) are essential to the problem or 

field equations, while other nondimensional parameters such as a, s/h and H/h depend on 

the particular atomizer configuration. 

Model Validation and Numerical Accuracy 

The various components of the numerical model employed within this analysis and dis- 

cussed above have been benchmarked independently.   Implementation of the boundary- 
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element method has been validated by predicting the flow across a cylinder and a NACA 

airfoil and by comparing the computed pressure distributions with analytical and experimen- 

tal results, respectively. Here, the pressure across the different shapes has been evaluated 

by using-the steady-state Bernoulli equation. - The liquid-phase model (without gas-phase 

coupling) has been analyzed in detail within previous work, including an analysis on the 

_accuracy of the employed thin film approximation or long wavelength assumption close 

to the point of film pinch-off where short wavelength contributions can be present. The 

latter has been accomplished by comparison of the computed results for an infinite period- 

ically disturbed liquid film with solutions obtained firom a two-dimensional discrete-vortex 

method.^'''*^ Accuracy in the evaluation of the unsteady term within Eq. (7) has been estab- 

lished independently by comparing^ the pressure distribution along the surface of an object 

placed into a gas stream with the pressure distribution predicted for the same object now 

moving with the same relative velocity in the same but quiescent gas. With respect to the 

pressure evaluation within the gas-phase, the latter case is unsteady (due to the moving 

boundary) and d<f}g/dt ^ 0, whereas in the former (steady) case, d<i)g/dt = 0. 

Note that the angled-derivative scheme^^ employed here and in Ref. 40 for the solution 

of the liquid film equations is second-order accurate in time and space. Numerical solutions 

for the pure convection equation showed that this scheme is superior to the Lax-Wendroff 

Method with Richtmyer splitting previously employed in Ref. 44, as it produces significantly 

less numerical diffusion for this test case. The latter feature is essential if details of the capil- 

lary wave propagation along the liquid film are to be predicted accurately. More information 

on the numerical method can be found in Ref. 45. 

III. RESULTS 

Base Case Analysis 

Fig. 3 shows a dilationally distorting liquid film subject to the forcing conditions imposed 

onto the gas jet inlet velocities Ug-i and Ug.;2. according to Eq. (1) at the lower (1) and upper 
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(2) gas-inlet ports, respectively. Here, both lower and upper gas jet pulsations are in phase 

so that ng^i = ng^2 = 0. This pulsing sequence, i.e. one gas pulse of time period Tp 

followed by a 'resting-period' Tp without gas flow is subsequently described as the base- 

case pulsation. Problem parameters for this case, subsequently referred to as base-case 

conditions are My = Mx = 1, p = pg/pi = 0.0012, Wej = 10 and s/h = H/h = 10. For all 

results presented in this analysis, grid-size and time-step independence has been verified by 

successive time-step reduction and mesh refinement (i.e., addition of computational nodes 

within the boimdary-element analysis). •- - 

Fig. 4 shows the dilationally distorting liquid film for the similar case but a modified 

gas-jet modulation. Here, gas jet pulses of period I], follow immediately upon each" other 

without a 'resting-period.' As observed i&om. Fig. 3, the energy provided by the impacting 

gas jets and base-case pulsation is insufficient to break the film, the latter being stabilized 

by surface tension. As more energy is transferred onto a given length of the moving film, 

this stabilizing efiect is overcome and film rupture is predicted at a downstream location of 

x/h = 106.5 and at a nondimensional time t* = 25. 

Assuming base-case parameter conditions as well as base-case forcing conditions for both 

upper and lower gas jets, but allowing for a phase shift or time shift of period Tp between both 

jet pulses, i.e. ng^i = 0 and 72^,2 = 1, one obtains an initially sinuous distorting film as shown 

in Fig. 5. Note that changing the pulse shape from a sin^-function to a (1 — cos) distribution 

while keeping the pulse period Tp and the overall pulse energy constant does not significantly 

alter the resulting film distortion. Recall that, for all the simulations presented here, plug 

flow has been assumed at both gas jet outlets. The efiiect of start-up conditions has been 

studied for the sinuous case of Fig. 5. Fig. 6 displays the result for the case where the first 

gas-jet pulse (entering the discharge channel from the lower port) was specified according to 

u'g.-^ = (1 -exp [—i/Ts]) Ug.i{t) with Ug-i from Eq. (1) and T, = 2.5. As observed from Fig. 6, 

the downstream location where film rupture occurs does not change significantly although 

break-up times do vary. For the case shown in Fig. 6, the time until film rupture occurs 

increased from approximately t* = 16 to t* = 21. However, film pinch-off is still predicted 
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at xfh « 45, although the location of the pinch-off within the waveform differs. Variation 

of ns;2 between 0 and 1 (with ne-i = 0) produces mixed-mode film defonnations (see Fig. 7). 

Due to the complexity in the resulting interface topology, the present work focused on the 

analysis of dilational and sinuous gas jet pulsations only. 

For the cases shown in Figs. 5 and 6, strong nonlinear coupling between sinuous and 

dilational modes leads to film breakup close to the nozzle exit. Note that, on average, 

the same amount of energy is added to the system as previously for the case with in- 

phase pulsing of both jets (see Fig. 3). However with the given forcing frequency and 

atomizer configuration, film rupture is more readily obtained indirectly by sinuous forcing 

and nonlinear sinuous-dilational mode coupling rather than by forcing film pmch-off directly 

by dilational film modulation. 

Comparison of Figs. 4 and 5 also shows that sinuous gas-jet pulsation under base-case 

conditions (and with base-case forcing) yields even shorter breakup times and lengths than 

the dilational case with modified forcing conditions, i.e. without 'resting-period;' despite the 

fact that, for the modified dilational case of Fig. 4, energy input into the system per unit 

time is, on average, twice that for the sinuous case illustrated in Fig. 5. Clearly, the greater 

ajnount of energy provided at the gas-jet inlet ports will not necessarily result in shorter film 

break-up times and lengths. More importantly, time history and absolute values of energy 

transfer rate from gas- to liquid-phase will determine the effectiveness with which the gas 

jets cause large amplitude dilational film distortions, which ultimately cause film rupture. 

Sinuous (i.e. out-of-phase) gas-jet modulation will result in larger differences between 

the instantaneous gas-phase pressures on both sides of the liquid film. Consequently, more 

energy is transferred onto the liquid film than under dilational (i.e. in phase) forcing con- 

ditions for the two gas jets. K nonlinear sinuous-dilational mode coupling is strong (e.g., 

for low Wej values), sinuous gas-jet forcing conditions will consequently result in faster film 

break-up than dilational gas-jet forcing. The importance of nonlinear sinuous-dilational 

mode coupling as the determining mechanism for film break-up has already been discussed 

for annular liquid films discharging into a surrounding void.'*" 
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Weber Number Effect 

Under conditions similar to those in Fig. 5 but laxger Weber number Wej, film resistance 

to transverse distortion or deflection is reduced (see Fig. 8 for Wej = 25); however, at larger 

Wervalues, nonlinear sinuous-dilatienal-mode coupling-remains weak and the film does not 

rupture before it hits the walls of the discharge channel. Although impact of the film with 

^he wall should result in rupture, the mechanism and the results will differ from those studied 

here. For our purposes, we will consider impact with the walls to be undesirable although 

it might have useful consequences in some technological applications. 

Reduced mode coupling is manifested by stretched-band-like film distortion rather than 

the formation of fluid blobs (cylinders) as found for Wej = 10 (see Fig. 5) and as illustrated 

also in Fig. 9 for the case with Wej = 5. In the latter case, the smaller Weber number 

(e.g. larger surface tension at same discharge velocity and film thickness) stabilizes the film 

by reducing transverse film oscillations and consequently also gas-phase pressure variations 

along the film in the downstream direction. This results in larger break-up lengths and 

times for the smaller Weber number case despite the fact that, for a given sinuous wave 

(i.e. wavelength and disturbance amiplitude), sinuous-dUational mode coupling is stronger 

for the smaller Weber number (i.e. We/ = 5) as illustrated by the underbraced terms in 

Eqs. (3,4). 

Previous analyses of planar films in a zero ambient gas and with film modulations en- 

forced locally onto the discharging film at the nozzle exit showed that, at a given imposed 

forcing frequency, up to two sinuous mode wavenumbers are observed downstream form the 

nozzle. In the parameter range of interest (i.e. large Weber number and low density ratio) 

both of these wavenumbers vary only Uttle in magnitude so that the resulting film distortion 

shows a characteristic beat behavior.^'^ Such a beat behavior could not be identified within 

the present configuration where film modulation is enforced via impacting and/or co-flowing 

gas streams. Note however that, in the present analysis, gas jets of a given finite width 

impact the moving film with a specified pulsation pattern and at a given frequency. In other 

words, the various disturbances generated by these jets and their specific wavelengths and 
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propagation velocities not only depend on the imposed gas-jet modulation frequency but also 

on the gas-jet geometry or gas-jet width; this is in contrast to the analysis of Ref. 37. For 

direct film modulation at the nozzle and zero density ambient gas (in Ref. 37), disturbances 

of various wavelengths result naturally from the harmonic modulation of the flow variables 

at the nozzle exit. The resulting wavelengths are affected by the imposed forcing frequency 

and the liquid Weber number (based on film thickness and film discharge velocity) only. 

This raises the question, if film rupture via gas-jet modulation can be optimized by 

co-ordinating gas-jet width and frequency of gas-jet pulses (at a given nondimensional film 

discharge velocity or Weber number Wej). The difficulty here is that any modification of 

the pulsing frequency will not only alter film distortion directly by altering the film length 

exposed to the impacting gas jet during the pulse but also indirectly by modifying the overall 

gas-phase flowfield. 

With respect to this study of Weber niunber effects on liquid film distortion, it should be 

noted that an increase in Weber number can be interpreted as a decrease in surface tension 

at the same value ofh and uj or as an increase of ui at constant surface tension and /i-value. 

In the latter case, the reference time within the solutions shown in Fig. 5 and 8 are the same, 

resulting in the same dimensional time frame. However, in the former case, Uef = 're//'Wre/ 

and Uref = Ja/{2pih); therefore an increase in the surface tension coefficient a yields an 

increase in tref so that for the same nondimensional time, the elapsed physical time is larger 

in Fig. 8 than in Fig. 5. For constant liquid velocity uj, we have Uref ~ We~^/^, so that 

the dimensional time scale in Fig. 8 (with Wej = 25) is stretched by a factor of vTs with 

respect to the dimensional time in Fig. 5 (with We; = 10). 

Fig. 10 shows dilational fitoa deformation for the same parameter configuration as used in 

Fig. 8, only now n^,! = ng^2 = 0, whereas before ne,i = 0 but ng^2 = 1- Figs. 8 and 10 suggest 

that, for larger Weber numbers (and film mod\ilation via gas jet pulsing), film rupture can 

be effectively controlled by dilational gas-jet pulsations, particularly if constraints of the flow 

geometry are to be considered. In addition, for large Weber number flows, sinuous-dilational 

mode energy transfer becomes increasingly ineffective so that film rupture lengths for similar 
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dilational and sinuous mode forcing conditions become comparable. 

In what follows, the discussion will focus on parametric studies for the sinuous mode 

case of Fig. 5. Sinuous mode film distortion has previously been considered to be the most 

-relevant mode of film disintegration for practical atomization systems. This does not imply 

that the sinuous mode will be more effective in causing film rupture than the dilational mode 

_mider every possible operating condition (e.g., for high-pressure or large density ratio pg/pi 

applications). In the past, experimental studies have focused on the sinuous mode of film 

disintegration, while numerical models considered (with some exceptions) the analysis of the 

dilational mode only. Based on this observation, the present analysis is intended to provide 

some insight to film distortion under the mode least considered within previous numerical 

or analytical work on nonlinear liquid film distortion and disintegration. 

Gas Momentum Effect 

Several variations and combinations of gas-jet inlet momentimi M|| and Mj. have been 

considered for the case shown in Fig. 5 where M|| = Mj_ = 1. The result obtained for 

Mx = 0.5 is illustrated in Fig. 11. According to the reduced vertical momentum, the 

efiect of the impacting gas jet onto the film is reduced, resulting in smaller initial sinuous 

film disturbances. FUm break-up after downstream growth of these disturbances (possibly 

enhanced by capillary and/or Kelvin-Helmholtz instabilities) is delayed. A result similar to 

the one shown in Fig. 11 was obtained for the case where M = j'MfHhM^ is kept constant 

while a is reduced from 45 degrees (see Fig. 5) to 30 degrees (see Fig. 12). Mx > 0.5 

and M|| > 1 in these cases. However, despite the larger values of Mx and M||, maximum 

amplitudes at a given time and downstream location remain somewhat smaller. Note that, 

the physical relevance of the short wavelength disturbances observed in Fig. 12 at t* = 27 

for x/h > 75 as predicted by the employed thin film model is uncertain. The accuracy and 

limitations of the current liquid-phase model with respect to short wavelength contributions, 

particularly close to the point of film breakup, has been discussed in detail in Ref. 44. 

If a is decreased further (i.e. to a = 15°), gas-jet normal momentxmi is further reduced 

in favor of an increase in gas momentum parallel to the undisturbed film. Fig. 13 shows that, 
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as a result, amplitudes of sinuous mode film disturbances are somewhat reduced compared 

to those found in Fig. 12 at the same time and downstream location. Results obtained for 

a = 75° varied only slightly from those computed for a = 45° shown in Fig. 5. 

- Figs. 14 and 15 illustrate cases where the vertical or parallel component of the gas-jet 

momentum was increased from 1 to 5 (at both inlet ports) while keeping all other parameters 

the same. In both instances, film pinch-off occurs close to the nozzle exit as a result of the 

pressure distribution generated by the impacting gas jets rather than through continuous 

wave growth, the latter being relevant for the case shown in Fig. 11 and 13, for example. 

Note that continuous wave growth in Figs. 11 and 13 does not imply monotonic growth. 

The monotonic growth can be expected for steady gas-phase boundary conditions (i.e. zero 

or constant velocity at gas inlet ports). For gas-jet pulsations without underlying base 

flow, relative velocities between gas jets and liquid film vary significantly over time causing 

disturbance amplitudes to growth sporadically. 

Density Effects 

Changes in the density ratio Pg/pi from the case shown in Fig. 5 have also been analyzed. 

Fig. 16 shows the result obtained for the similar parameter set as in Fig. 5 but with a five-fold 

increase in Pg/pi. Due to the relative increase of gas-phase inertia, transverse film defiection 

is now larger (at the same gas-jet forcing conditions). Film distortion as illustrated in 

Fig. 16 resembles the prediction made in Fig. 8 for an increase in liquid Weber number We/. 

However, in the present case, mode coupling is not altered and the film ruptures shortly 

before impacting on the channel walls. Also, for the larger density-ratio case, film deflection 

extends over a larger domain than shown in Fig. 8. 

Pulse Period 

The effect of variations in pulse period Tp on film distortion for the sinuous mode of 

Fig. 5 will now be summarized: 1) For large Tp-values (and constant jet width), the trans- 

verse displacement of the film becomes large before the counter-acting gas jet causes the 

deceleration and reversal of the displacement. Here, transverse film motion caused by an 

impacting gas-jet pulse might result in film impingement onto the channel walls (before re- 
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versa! of the film dislocation due to gas-jet impact onto the film from the other side). 2) For 

small Tp-values (see Fig. 17), transverse film distortion remains small (due to more rapid 

appearance of the opposed gas jets) with only shorter wavelength disturbances appearing 

on the film. Note that the gas jet width is s/h = 10 and gas-jet impact changes from 

one side of the film to the opposite side at frequency 1/Tp. Therefore, even though one 

jas jet generates an instantaneous film disturbance of approximate length I = (s/h) cos a, 

the only part of this disturbance not compensated by the action of the opposed jet has a 

length ofX = uiTp.lD. order to achieve an effective initial sinuous mode film distortion with 

gas-jets phased according to ng^i = 0 and 71^,2 - 1, the pulsing period Tp should be longer 

than the time needed for a liquid particle to travel across the length of the gas inlet ports, 

i.e. Tp > s/{h cos a ui). However, as mentioned above, for very large Tp values the film will 

tend to impact onto the walls of the discharge channeL In the present configuration, gas-jet 

impact is confined to the vicinity of the atomizer, whereas further downstream, amplitude 

growth of the liquid film disturbance will be increasingly influenced by Kelvin-Hehnholtz 

effects. Therefore, the pulse period providing optimum wave growth will depend on 1) the 

generation of an optimum (to be defined) initial film disturbances in the vicinity of the at- 

omizer (i.e., large amplitude and large initial dilational mode contribution or film straining), 

and 2) amplification of the initial disturbances through (sporadic) Kelvin-Helmholtz wave 

growth, where the wavelength of the distiirbance with optimum growth rate will depend 

on the given parameter configuration, e.g. m, Mg,i/2(*), Wej, pg/pi, and the dynamics of the 

unsteady gas streams. 

Gas-Phase Continuous Flow 

The previous discussion focused on Uquid film distortion and disintegration resulting from 

time-periodic modulation of the gas-phase velocity on both sides of the liquid film. Forcing 

conditions onto the initially quiescent gas phase were imposed at the gas-jet outlets according 

to Eq. 1. Accordingly, gas-phase injection remained confined to pulse events of time-period 

Tp. Between these injection events, gas-phase velocities on both sides of the Uquid film were 

determined by the dynamics of the deforming gas-liquid interfaces. In this paragraph, gas- 
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jet pulses are superimposed onto continuous gas streams discharging from the two gas-inlet 

ports. Figs. 18, 19 and 20 illustrate 3 cases with time-dependent forcing conditions similar 

to the sinuous mode case of Fig. 5 now superimposed onto steady gas streams entering from 

the two gas-inlet ports at constant velocity Ug.,.-Steady inlet velocities are assumed to be 

the same at both gas-inlet ports in order to prevent continuous transverse fihn deflection, 

the latter being limited by the discharge chamber walls. Puke period Tp in Figs. 18 through 

20 is Tp = 5,8.75 and 20, respectively; gas-stream steady base-flow velocity and amplitude 

of the gas-phase velocity modulation are fixed at Ug^s = 0.25 and Ug.Q = 0.5. Therefore, the 

maximum injection velocity reached by the gas-jets in Figs. 5 and 18 is the same, while the 

average energy flux provided by the gas-jets in the latter case is larger, due to the underlying 

time-independent velocity component. The average energy flux for gas inlet ports 1 and 2 

is given by 

"' n Jt=Q 2 

with the mass influx per unit width of the two-dimensional gas inlet ports m'ifi{t) = 

pg s U3;i,2(*)- The integration in Eq. (9) is performed over a multiple number of pulse periods 

Tp {n = even integer). The time-independent component of the overall gas-jet momentum 

is equally distributed onto the gas jets on either side of the liquid film; consequently, the 

fluctuating part of the gas-jet momentum or gas pulse, which is reduced from its original 

value, will cause less deflection of the liquid fihn in the transverse direction. This results 

in an increase m breakup length and time (see Fig. 18), even though the underlying non- 

modulated gas-phase velocity allows for continuous energy transfer from gas-to liquid phase, 

i.e. continuous Kelvin-Helmholtz wave growth. 

It is useful, in this context, to compare fihn distortion at t' = 32 with the corresponding 

interface locations predicted for the case shown in Fig. 13, i.e. at t* = 27. Note that, 

within the simulations of Figs. 18 through 20, gas-jet velocities on both sides of the liquid 

film were increased from zero to the specified Ug., value within a nondimensional start- 

up time of 5 units.  After this time, gas-jet modulation was initiated beginning with the 
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lower gas jet. Also, in the case shown in Fig. 13, the maximum amplitude of the vertical 

gas-jet velocity component associated with the generation of the initial film disturbance is 

Ug-o sm(7r/6), whereas in the former case it is 0.5 %;o sin(7r/4). Comparison of the liquid 

fihn location for the two cases at the prescribed times, therefore illustrates that wave growth 

from intermediate gas-jet pulsing can result in larger overall amplitude disturbances than 

^obtained via continuous wave growth from continuous gas-jets, the latter providing larger 

overall energy input into the system. 

The effects of increasing pulse period Tp for the case with, underlying base flow can be 

observed from Figs. 18, 19 and 20. As Tp is increased, transverse film deflection resulting 

from gas-jet impact is allowed to proceed further before being 'compensated' or counter- 

acted by a gas-pulse from the opposite side of the fihn. Consequently, amplitudes in the 

centerline disturbance of the film increase as Tp is increased. On the other hand, larger values 

of Tp result in longer wavelength sinuous-mode film disturbances. However, at similar values 

for the disturbance amplitude, longer wavelength sinuous-mode waves result m reduced 

dilational mode wave amplitudes due to a reduction in nonlinear sinuous-dilational mode 

coupling with increases in the wavelength of the sinuous mode wave. 

As for most of the results presented in earlier sections, the computational domain for the 

solutions in Figs. 18, 19 and 20 extended from x/h = 0 to x/h = 125, with prescribed static 

pressure in the gas-phase at the downstream location. Simulations for the similar cases but 

extended computational domain, i.e. x/h = 250 showed that, in the former case, the imposed 

pressure condition effectively suppresses long wavelength film disturbances generated during 

the start-up phase of the fihn modulation. Note that, this has not been observed for the cases 

without continuous gas-flow discussed earlier. (The importance of the start-up condition for 

the case without continuous gas jets has already been discussed earlier for the case illustrated 

in Fig. 5.) 

Linear theory for continuous wave growth on thm films via the Kelvin-Helmholtz 

mechanism*^ shows that, for the base-case parameter set considered here, the described 

longer waves have significantly larger growth rates than the ones generated by the impact- 
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ing gas jets. This is illustrated by the growth rate plot shown in Fig. 21 for harmonic 

sinuous waves ri± = TJO exp [i{kx — ojt)] on a thin liquid film subject to two co-flowing gas 

streams in an infinite domain (here r]± denotes the transverse deflection of the disturbed liq- 

uid interfaces). Since the longer wavelength contributions are not suppressed on the longer 

computational domain, transient effects characterized by growth of the longer wavelength 

disturbances generated during start-up will result in significant transverse deflection of the 

liquid fihn which is already being distorted at shorter wavelength due to the periodically 

impacting gas jets. See Fig. 22 for the case with Tp = 5. A similar observation has already 

beea made for modulated thin armular liquid films in Ref. 40 where transient effects caused 

film collapse or fluid blob formation. 

The longest wavelength suppressed on the shorter domain but present on the longer 

domain is of the order of the length of the longer domain; this implies that, for the case 

considered here (Figs. 20, 22), the nondimensional wavenumber kh suppressed on the shorter 

domain is of 0(0.01). Prom Fig. 21 we see that the corresponding nondimensional growth 

according to the linear analysis of Ref. 43 is about 0.035 which corresponds to a growth rate of 

0.04 in terms of the nondimensionalization used in this work. This yields a threefold increase 

in the initial disturbance amplitude of the prescribed long-wavelength contribution after t* = 

25, if in fact this wavelength is not suppressed. (Compare Figs. 20 and 22.) From Fig. 20, one 

can estimate the dominant nondimensional disturbance wavenumber to be approximately 

kh = 0.25, the corresponding growth rate according to Fig. 21 is approximately six times 

smaller than for the described larger wavenumber contribution. It should be noted again 

that nonlinear sinuous-dilational mode coupling is reduced as the wavelength of the sinuous 

wave increases. Consequently, even though the longer sinuous waves will result in larger 

transverse film deflection, they will be less effective in causing film rupture or break-up 

than the shorter wavelength sinuous mode waves generated by the imposed periodic gas-jet 

pulses. 
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Direct Film Modtilation 

To this extend, liquid film distortions were generated by gas jets impacting onto the 

liquid film from either sides. An alternative method to generate initial film disturbances is to 

impose forcing conditions directly onto the liquid-phase flow variables at the slit nozzle where 

the liquid discharges from the atomizer. Practically, such a modulation can be achieved for 

^example via piezoelectric actuators placed inside or adjacent to the liquid feeding channel. 

This has been analyzed for the case where gas density is negligible^^. However, now gas 

density and motion will have an effect. 

There are two important characteristics which distinguish the prescribed direct film 

modulation from the indirect modulation, via impacting^ gas jets: 

1) Only part of the energy used to modulate the gas jets is transferred into the liquid 

phase resulting in film distortion. Direct liquid-phase modulation, on the other hand, guar- 

antees that all the energy invested in modulating one or more liquid-phase flow parameters 

wiU translate into film disturbances.. Indeed, simulations similar to those shown in Figs. 3 

and 5 but without gas jet modulation and time-dependent forcing conditions imposed onto 

the axial or transverse film velocities u and v at the nozzle, i.e. 

°° t t 
l{x = Q,t) = Y, Wi.,Qsin^ [7r(— - 2n)]    for   2n < — < (2n + 1) 

n=0 ■'■P P 

and   w{x = 0, t) = 0     , otherwise (10) 

101 

where w =^ u or m = v, resulted in nearly instantaneous film rupture if the energy in- 

vested into the modulation is assumed to equal the energy added to the gas-phase for the 

corresponding gas-phase modulated case shown in Figs. 3 and 5, respectively. 

2) Direct liquid-phase modulation, as described above, imposes energy only locally on the 

film, i.e. at its discharge location from the atomizer. Indirect film modulation via impacting 

gas jets causes energy transfer onto the Uquid fihn over a finite length of the discharging 

stream. In fact, a gas-jet pulse discharging from one of the gas-jet inlets shown in Fig. 1 

will cause energy transfer or film modulation over the entire length of the disturbed liquid 

film; this is in contrast to the discussed direct film modulation which remains confined 
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to the film discharge plane throughout the entire simulated time frame. If, as considered 

later, the discharging film is modulated directly in the presence of continuous gas streams, 

energy transfer onto the film occurs both locally at the nozzle exit and globally through 

interaction of the disturbed liquid film interfaces with the "co-flowing" gas streams. Even 

if the surrounding gas-phase is quiescent, an originally localized film disturbance will have 

some non-local effect due to its interaction with the gas-phase. The latter has been assumed 

to be incompressible which implies an infinite value for the speed of sound or instantaneous 

propagation of information throughout the gas-phase. 

Fig: 23 shows the case of a directly modulated liquid film with or without steady gas- 

jets and with modulation energy that equals 5 % of the energy previously added to the 

gas-phase in Fig. 5 in order to generate sinuous film distortions. In Fig. 23, modulations 

were enforced onto the transverse film velocity v at the nozzle exit a; = 0 according to 

Eq. (10). In other words, the same time-dependent forcing function was used as previously 

employed for the gas-phase modulation in Fig. 5. Comparison of Figs. 5 and 23 shows 

that maximum transverse film deflection is comparable in both cases, even though energy 

input for the direct liquid-phase modulated case is significantly smaller than for the indirect 

gas-phase modulated film. On the other hand, as noted earlier, energy transfer onto the 

liquid via gas-jet modulation takes place along the entire disturbed interface. This results, 

as observed firom Figs. 5 and 6 in stronger sinuous-dilational mode coupling or dilational 

fihn distortion which ultimately causes film ruptinre at approximately x/h = 45. Fig. 23 

illustrates that mode coupling without significant gas-phase interaction is not strong enough 

(for the considered parameter configuration) to cause film rupture, even though disturbance 

amplitudes of the sinuous waves are comparable in both cases. The effect of continuous gas 

jets superimposed onto the liquid-phase-modulated discharging film is also demonstrated 

in Fig. 23. Comparison of the corresponding results shown in Fig. 23 indicates that the 

admission of continuous gas jets on both sides of the liquid film causes a 50 % reduction 

of the sinuous mode disturbance amplitudes generated by the imposed modulation of v at 

the nozzle. Furthermore, the domrnant sinuous mode wavelength is reduced by a factor of 2 
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upon, admission of equal velocity gas streams; at the same time, the amplitude of dilational 

mode film disturbances is increased. Using only 10 % of the energy admitted in the gas- 

phase modulated case of Fig. 5, direct liquid film modulation produced film rupture at 

approximately the same downstream location. However, as illustrated in Fig. 24, transverse 

film deflection is significantly larger in this case. 

- Direct liquid-phase modulation with or without adjacent gas streams has also been con- 

sidered for the pure dilational mode of film distortion. Fig. 25 shows the distorting liquid 

film for the same parameter set as in Fig. 3 but now with modulation of the axial velocity 

component u according to Eq. (10) rather than gas-jet modulation as employed in Fig. 3. 

As for the previously discussed sinuous case, the amount of energy used to modulated the 

liquid film in Fig. 25 was only 5 % of the energy added in the case shown in Fig. 3. In 

contrast to the sinuous case of Fig. 23, where film rupture has not been observed within the 

simulated time frame, the film in Fig. 25 ruptures early at t* = 27 at a downstream location 

of approximately x/h = 68. Clearly, for the considered parameter configuration, dilational 

modulation is preferred if film rupture is achieved by direct liquid-phase modulation. On the 

other hand, efiective film breakup (characterized by small energy input and short breakup 

length) for gas-phase modulated films is achieved by forcing sinuous mode waves rather than 

dilational ones. 

Comparison of Fig. 25 and 26 shows that time for film rupture from dilational liquid- 

phase modulation is reduced by the addition of surrounding gas streams; however, film 

breakup length is not influenced significantly. Also, the wavelengths of dilational mode 

disturbances generated by direct-liquid phase modulation is not significantly altered by the 

admission of gas streams on both sides of the discharging film. 

From the previous discussion we find that, liquid film disintegration via gas-jet modu- 

lation is less efiiective than direct modulation of liquid-phase flow variables. However, this 

statement only refers to the initial film rupture process discussed here. Once liquid ligaments 

have been detached from the continuous liquid film, further breakup of these ligaments can 

only be achieved via energy transfer from the surrounding gas-phase onto the liquid-phase 
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ligaments or droplets. Here, large relative velocities between gas-phase and discrete liquid 

phase is expected to be essential to promote ftirther breakup of ligaments and droplets. 

Extended Quantitative Analysis 

The previous sections have focused on the distortion and rupture characteristics of dis- 

charging liquid films impacted by gas jets. Quantitative data was only provided for film 

breakup lengths and times for the different configurations. 

In order to allow qualitative and quantitative comparison of the computed results with 

future experimental observations of these films, we present the results from a quantitative 

analysis of the time-dependent variations in film thickness y and film centerline location y 

at various positions downstream from the nozzle. The employed Fourier analysis and the 

consideration of phase diagrams for local values of y and y follows the work by Ramos*^ who 

studied the drawing of annular liquid jets at low Reynolds mmibers. 

Figs. 27 through 30 illustrate phase plots obtained for the case shown in Fig. 11 at 

x/h = 12.5 and x/h = 25, respectively. Nearly time-periodic variations in film thickness 

y{t*) and centerline displacement y{t*) occur close to the nozzle (Figs. 27 and 28). The 

centerline displacement becomes increasingly non-periodic, further downstream (Fig. 30). 

Deviation from periodic behavior at x/h = 25 is significantly less pronounced for y{t*) than 

for y{t*). At x/h = 12.5 the phase of y(t*) takes a dumbbell-like or hourglass-like shape 

whereas the orbit of y(i*) at the same location is circular with higher-harmonic contributions 

resulting in an additional inner heart-shaped loop. Fourier analysis of the signals y{t*) and 

y{t*) shows that the dumbbell (hour-glass) shaped y-orbit is generated mainly by the first and 

third harmonic of the sinuous modulation frequency, i.e. fm = l/(2Tp). The phase of y{t*) 

is a result of the first, second, third and fourth harmonic in the film thickness variations, 

whereby according to the half-wavelength thinning of nonlinear sinuous distorting planar 

films, the value of the first harmonic in the thickness variation is twice that of the first 

harmonic in the centerline variation of the film. As the contribution of the fourth harmonic 

in y decreases further downstream, the heart-shaped loop in the y-orbit changes to a simple 

inner loop without the "kink". As noted earlier, oscillations in film thickness at x/h = 25 
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are quasi-periodic whereas deviation from periodic behavior is already significant for y(i*) 

at x/h = 25. However, Fourier analysis of the y signal shows that the energy contained in 

the sinuous film oscillation at that location is still found predominantly in the first and third 

harmonic of the modulation frequency /„,. It is noted here that the Fourier transform of y 

ox y — h and y at a given downstream location x/h was taken within a time interval after 

the film oscillation at that particular location as been established or, in other words, after 

the initial film disturbance has passed the considered downstream location. 

y and y phases-plots for the cases illustrated in Figs. 6 and 12 are similar to those 

discussed above. For the reduced Weber mmiber case of Fig.. 9, the inner loop within the 

phase-plot for y at x/h = 12.5 is very tight and without "kink". Foxirier analysis of the time- 

dependent signal y at that location shows that here, the fourth harmonic in the thickness 

variation is no longer important. For the corresponding phase-plot of y, y = 0 and dy/dt = 0 

are no longer general symmetry lines (as observed in Fig. 28), however the orbit still shows 

point-symmetry around dy/dt = y = 0. 

It is noted here that the appearance or disappearance of the prescribed "kink" or heart- 

shaped inner loop in the phase plot of y does not necessarily constitute the presence of a 

higher (in this case fourth) harmonic mode. It can also be the result of a variation in the 

phase-shift between the lower frequency modes. 

In the presence of a non-zero constant gas flow superimposed onto the gas-jet pulsation 

of the base case (see Fig. 18) the hour-glass shaped orbit in the y phase-plot is still observed. 

However, the amplitudes in y and. dy/dt increase with each completed orbit. Fourier analysis 

of the corresponding time-dependent signal for y shows that as for the lower Weber number 

case discussed above, the fourth harmonic mode is no longer relevant here. The phase plot 

of y at x/h = 12.5 does not exhibit the heart-shaped iimer loop. 

For the described gas-jet modulated liquid films, periodic behavior in the variation of y 

and y deteriorates fast with increasing downstream distance. This is in contrast to a liquid 

film which is modulated within the Uquid phase itself. For the sinusoidally modulated film 

in Fig. 23 without co-flowing gas streams, variations in film thickness and film centerline 
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location at fixed downstream location are highly periodic (after a certain start-up period) up 

to a downstream distance of x/h = 50. See Figs. 31 and 32 for x//i = 12.5. However, with 

co-flowing surrounding gas-streams re-occuring orbits (even close to the atomizer nozzle) are 

no longer observed. 

Even though periodic behavior in the variation of y and y deteriorates with increasing 

downstream distance (and in particular for gas-phase modulated films), analysis of the 

power-spectra for the oscillation in film thickness and/or fiilm-centerline location shows that 

in the investigated cases, the majority of the film energy remains confined to the harmonic 

modes present close to the nozzle, latter being the first and third harmonic for the film 

centerline location and the first, second, third and fourth harmonic for the film thickness 

variation. Accordingly, and in an efibrt to provide as much significant quantitative data as 

possible, the included tables list real and imaginary parts of the Fourier transforms for the 

various dominant harmonic modes observed in the time-signals for the film thickness y and 

film centerline location y at various downstream locations. 

Fourier transforms X{k) for length N input sequences x{n) have been calculated by using 

MatLab^^ according to 

N 

X{k) = J2 ^W exp [-i27r(A; - l)[(n - 1)/N]]       l<k<N 
n=l 

1    ^ 
x{n) = -7^ E ^(^) exp [i27r(A; - l)[(n - 1)/N]]        l<n<N 

where x{n) is given by x{n) = y{nAt) or x{n) = y{nAt) at a certain downstream location 

and within a certain time-interval, i.e. UsAt < nAt < UgAt, whereby At is the time-step 

used within the simulation. 

Since the input sequence x{n) is real, the above equation for x{n) can be rewritten in 

terms of a summation of sine and cosine functions with real coefficients 

,.       1 A   /,^       /27r(A:-l)(n-l)\     ,.,,.   f2Tr{k-l){n-l)\ ,^^. 
^(^) = ]v S ""(^^ ''^^ [   —N ) "^ ^^"''' \   —iv )        ^  ^ 

where 
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a(A;) = real[X(A:)]    ,    b{k) =-miB.g[X{k)]       ,l<n<iV (12) 

With the knowledge of the transforms X{ki) from Tables 1 through 4, the approximate 

phase plots for y and y at the various downstream locations can be reconstructed and 

compared with the results obtained, for example, from experimental observations. Clearly, 

the energy contained in modes other than the ones described above and provided in the 

Tables is small and justifies the omission of these modes in the present investigation. 

Spray Angle 

Liquid film atomization and spray formation is a three-dimensional phenomenon even for 

planar films and includes the formation of streamwise vortical structures leading (depend- 

ing on operational conditions) to cellular film breakup or stretched streamwise ligament 

breakup/'^ Besides the importance of three-dimensional efiects for the spray formation pro- 

cess, the resulting spray angle will greatly depend on the conditions (e.g. velocities) at which 

ligaments are shed continuously from the continuous Uquid film. The present analysis, which 

applies only up to the point in time where film rupture first occurs, cannot address these 

issues (which are vital for an accurate determination of the spray angle). 

In their experiment on liquid films discharging from a planar twin-fluid atomizer, Man- 

soni and Chigier^ considered the envelope of the transversely distorting liquid film as a 

measure for the spray angle. However, for modulated liquid films Asare, Takahashi and 

Hoffinan^^ showed that following linear stability theory, the amplitude of the envelope grows 

exponentially up to a point where it saturates due to nonlinear efiects. The authors also 

showed (for certain operational conditions) good agreement of their experimental results 

with theoretical predictions from a simplified trajectory theory. Accordingly, a prediction of 

spray angle based on the slope of the envelope at the point of film rupture greatly depends 

on the film rupture point and cannot be very reliable. 

Nevertheless, based on the envelope growth observed for the difi'erent configuration, 

indications are that an increase in spray angle (with respect to the base case of Figs. 5 and 

6) is expected with an increase in Weber number (see Fig. 8) and with an increase in gas- 
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to-liquid density ratio (see Fig. 16). Naturally, the most significant increase in spray angle 

is expected for an increase in vertical gas-jet momentum ratio. See Fig. 14, where liquid 

ligaments are expected to be shed periodically from the highly deflecting film. Furthermore, 

based on the film envelope, a reduction in spray angle can be expected for a decrease in 

Weber number (see Fig. 9), a reduction of vertical gas-jet momentum (see Fig. 11), and a 

reduction in gas-jet impact angle (see Figs. 12 and 13). For liquid films modulated at the 

nozzle exit. Fig. 23 indicates that the addition of constant co-flowing gas streams will result 

in a decrease in the spray angle, if indeed this angle is based on the envelope behavior of 

the distorting film. 

IV. SUMMARIZING REMARKS 

The flowfield in the vicinity of a twin-fluid atomizer has been analyzed numerically. 

Considered is a thin two-dimensional inviscid incompressible liquid film discharging from 

the atomizer centerline surrounded on both sides by gas jets which impact symmetrically 

onto the discharging film. Initial film distortion is enforced actively by: 1) modulation of 

the impacting gas jets (indirect or gas-phase modulation) with gas momentum components 

parallel and normal to the liquid stream, 2) modulation in the liquid-phase at the atomizer 

exit (direct or liquid-phase modulation) or 3) direct liquid film modulation with superpo- 

sition of continuous gas streams. The investigation focused on gas-phase modiilated films. 

Effects of different flow parameters on film breakup characteristics were studied by varying 

one of the flow parameters from a given base-case configuration. 

For direct (i.e., gas-phase) modulated films, energy input at the gas-inlet ports was found 

to be inadequate in identifying effective film rupture conditions, the latter being character- 

ized by short break-up length and times at minimum energy input into the system. For the 

parameter domain surrounding the considered base case, film rupture was obtained more 

effectively by sinuous forcing and subsequent nonlinear sinuous-dilational mode coupling 

rather than by dilational forcing at the same average energy flux into the system. Also, it 
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was observed that intermediate gas-jet pvilsing (without underlying continuous gas flow) can 

yield the same or larger amplitude distiurbances than obtained through continuous distur- 

bance wave growth from continuous jets at the same overall energy input into the system. 

Direct modulation of liquid phase flow-parameters, i.e. axial or transverse film velocity, 

at the nozzle exit is more effective than gas-jet modulation, the latter transferring only a 

portion of the modulation energy onto the film. Computational results also indicate that for 

direct liquid phase forcing, dilational modrdation (i.e. modulation yielding dilational film 

distortion) is more effective in causing film rupture than sinuous modulations, while, as 

noted earlier, the opposite is true for gas-jet modulated liquid films. Also, for liquid-phase. 

modulated films admission of nonzero ambient gas streams si^iificantly reduces sinuous 

mode wavenumbers whereas influence on wavelengths remains small for dilationaJly distort- 

ing films. 

For gas-phase modulated films, variations of Weber number, gas jet to liquid film mo- 

mentum ratio, gas-to-liquid density ratio and pulse period were considered and their effect 

on fihn distortion was analyzed. An increase in Weber number from its base-case value 

(i.e. from 10 to 25) resulted in stretched band-like films and a delay in film rupture due to 

reduced sinuous-dilational mode coupling. On the other hand, reduction in Weber number 

(i.e. from 10 to 5) resulted in smaller distiirbance amplitudes and larger break-up time and 

length despite stronger nonlinear mode coupling manifested by the contraction of the film 

into fluid cylinders connected by thinner fluid films. Transverse deflection of the film center- 

line for a five-fold increase in density ratio was similar to the one observed for the increased 

Weber number case; however, fluid blob formation was still observed. 

A five-fold increase in vertical or parallel gas-jet-to-liquid-film-momentum ratio resulted 

in "immediate" film rupture caused by the dynamics of the impacting gas jets rather than by 

continuous growth of film disturbances downstream with energy transfer from the adjacent 

gas-streams. 

Variation in pulse period affects film distortion in two ways: It changes the amplitude of 

the initial film disturbances generated by the pulsed gas-jets, since increasing the pulse period 
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provides more time for transverse film movement (due to one-sided gas-jet impact) before 

being counter-acted by an opposed gas jet. On the other hand, it alters the wavelengths 

of the disturbances generated on the film and therefore the gas-to-liquid energy transfer 

downstream from Kelvin-Helmholtz-type wave growth. 
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Table 1: Complex Fourier coeflBcients determined for nondimensional fre- 
quencies / = 0,0.2,0.4,0.6,0.8 of y(t*) and frequencies g = 0,0.1,0.3 of 
y{t*) at various downstream locations x/h. Data taken from cases shown in 
Fig. 6, Fig. 9 and Fig. 18. {t*J^^ denotes the sampling interval.) 

case Fig.6 Fig.9 Flg.l8 
x/h 12.5 12.5 12.5 25 

tU 11 - 20.9 8 - 17.9 11 - 31.5 16.25 - 26.25 

h -1.7425 0.1243 -3.6091 -1.1409 

fo.2 -2.4001 -i 3.5750 0.6519-18.5912 -2.2346-13.2005 4.9988 -i-i 2.6593 

foA -0.3777-15.7013 -0.0560 -1 3.4911 0.2596 -i 2.8377' -3.3047 -11.3497 

fo.6 -0.3274 -i 1.8957 -0.9075 +i 0.8650 0.1585 -i 0.4658 0.2757-11.2830 

fo.a -0.6983 +1 0.4870 -0.0686 -1 0.1412 0.0080 +i 0.0422 0.0847 -1 0.0845 

9o 9.67 -4.9318 46.92 -63.8480 

90.1 -126.48 -i 66.94 81.5998 +1 83.3471 117.45 +1 170.43 -11.3874 +i 80.3349 
30.3 -10.37-127.69 -11.1639 -i 11.2677 -16.95 -1-i 10.15 0.7101 -f-i 22.4862 

Table 2: Complex Fourier coefficients determined for nondimensional fre- 
quencies / = 0,0.2,0.4,0.6,0.8 of y(i') and frequencies g = 0,0.1,0.3 of 
y(t*) at various downstream locations x/h. Data taken from cases shown in 
Fig. 11 and Fig. 12. (t*„t denotes the sampling interval.) 

case Fig.ll Fig.l2 
x/h 12.5 25 12.5 25 50 

tint 8-18 11.5 - 21.5 6-26 11.5 - 21.5 17-27 

/o -1.1274 -0.2904 -2.2123 -0.3252 -0.1413 

fo.2 2.1313 +1 0.1244 5.2311 +1 4.6508 -3.0126 -i 2.7513 4.5862 +i 4.4771 8.0436 -1-1 12.3251 

/0.4 -2.6680 -1 0.2732 -4.4851 -i 5.4008 -0.4646 -i 4.7289 -3.4008 -1 5.0893 -15.8212 +1 7.7273 

fa.e 0.7068 -i 0.5327 1.9118 -1 2.8906 -0.1792 -i 1.5370 1.9544 -1 1.9449 -3.4856 +i 4.5756 

fo.8 0.3036 -1 0.2878 0.6632 +i 0.0905 -0.2280 +i 0.5580 0.4152 -f-i 0.2162 -0.0874 +1 0.6210 

90 -5.3221 -16.7992 4.68 -17.8351 5.01 

90.1 -18.4821 +i 75.7047 -32.4973 +1 75.9395 133.87 +i 93.26 -40.7346 -I-i 78.6269 -29.20 -i 100.29 

50.3 5.1482 -i 14.6942 -14.3083 -I-i 30.8077 3.72 +i 30.94 -15.5162 +i 25.3493 7.14 -1 32.95 
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Table 3: Complex Fourier coefficients determined for nondimensional fre- 
quencies / = 0,0.2,0.4,0.6,0.8 of y(i*) and frequencies g = 0,0.1,0.3 of 
y{t*) at various downstream locations x/h. Data taken from cases shown in 
Fig. 23. {t*J^^ denotes the sampling interval.) 

case Fig.23 (dash,solid) Fig.23 (dot,dash-dot) 
x/h 12.5 25 50 12.5 

iU 8-38 10-40 20-40 7-27 
/o 1.0959 2.6197 0.8649 -3.7106 
/0.2 5.0258-i 0.3302 -12.3063 -i 15.3748 4.1233+144.0686: -0.8199 -i 3.9278 
/0.4 -1.2484 +i 5.7662 -1.0425 -i 16.3421 -26.9334 +i 3.7302 2.4076 -i 3.7397 
fo.e -0.4002-i 0.6104 1.1145-15.6337 -5.6068 -i 4.2925 0.8231 +i 0.2940 
fo.8 1.5359 +i 1.1584 0.1498 -hi 0.2117 0.2417 +i 1.1853 -0.2590 +i 1.4226 
90 0.21 -12.7 1.93 63.36 
9o.i 12.85 +i 536.95 580.55 +i 657.35 -391.44 -i 31.04 226.70 +i 231.71 
90.3 -9.86 -i 55.09 25.25 -i 33.98 -29.35 +i 12.68 -10.70 +i 19.00 

Table 4: Complex Fourier coefficients determined for nondimensional fre- 
quencies / = 0,0.2,0.4,0.6,0.8 of y(t*) at various downstream locations 
x/h. Data taien from cases shown in Fig. 3 and Fig. 4. {tint denotes the 
sampling interval.) 

case Fig.3 Fig.4 
x/h 12.5 25 50 12.5 25 50 

tU 7-37 10-40 15.5 - 45.5 5-25 9.5 - 24.5 15-25 
/o 
/o.i 
fo.2 
fo.3 
foA 
fo.5 
fo.6 

-1.0487 
-0.6770 - i 1.0303 
0.8751 - i 0.9734 
0.8444 + i 0.4398 
0.0424 + i 0.3450 
0.0512 - i 0.0836 
0.0322 + i 0.0066 

-1.1002 
-1.8518 - i 1.9126 
2.4318 - i 2.0079 
1.4058 + i 1.2092 
-0.0645 + i 0.1913 
0.0737 - i 0.2080 
0.0178 + i 0.1015 

-1.0912 
-4.6015 -1 3.4093 
4.3950 -i 4.8127 
2.7260-l-i 0.9146 
-0.0625 -i 0.4539 
0.1080 -i 0.4961 
0.1618 -i 0.0052 

-1.4044 
-0.0004 +i 0.0003 
-1.6982 +i 0.3701 
0.0026 -i 0.0002 
-0.4588 +i 0.1487 
-0.0027 -i 0.0049 
0.0465 -i 0.0973 

-1.0758 
-0.0008-i 0.00115 
0.8970 -i 2.9529 
0.0015 -i 0.00285 
0.4805+i 0.2696 
-0.0041 -i 0.00185 
0.0743 -i 0.1839 

-0.7213 
0.0045 +i 0.0009 
1.0881 -i 4.6293 
-0.0016 +i 0.0095 
0.2182 +i 0.0205 
0.0136 +i 0.0303 
-0.4138 -i 0.3860 
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Figure captions 

Figure 1: Schematic of Twin-Fluid Atomizer Configuration 

Figure 2: Solution procedure for dilational mode film forcing {y = 0, v = Q ; h = y, u = u, 

<P = <f>g;i, Pg = Pg;i, T = Fi, y_ = -y/2, Pc = Capillary pressure along lower interface). 

Figure 3: Dilationally distorting gas-jet-modulated semi-infinite planar film under base-case forc- 

ing conditions according to Eq. (1) and for base-case parameter set: s/h = H/h = 10, 

Pg/pi = 0.0012, Wei = 10, Mx = My = 1. Tp = 5, ng,i,2 = 0. 

Figure 4: Dilationally distorting gas-jet-modulated film with base-case parameter configuration 

and modified pulse characteristics. 

Figure 5: Sinusoidally distorting gas-jet-modulated film under base-case forcing conditions ac- 

cording to Eq. (1) and for base-case parameter set: s/h = H/h = 10, Pg/pi = 0.0012, 

Wei = 10, Mi = M|| = 1. Tp = 5, ng,i = 0, ng,2 = 1. 

Figure 6: Discharging sinusoidally distorting gas-jet-modulated liquid film according to Fig. 5 

with modified start-up conditions. 

Figure 7: Discharging gas-jet-modulated liquid film according to Fig. 5 under mbced-mode forc- 

ing conditions {ng-i = Q,'rig.2 = 0.5). 

Figure 8: Effect of Weber number increase (Wej = 25) on discharging sinusoidally distorting 

gas-jet-modulated liquid film. 

Figure 9: Effect of Weber number decrease (Wej = 5) on discharging sinusoidally distorting 

gas-jet-modulated liquid film. 

Figure 10: Effect of Weber number increase (We^ = 25) on discharging dilationally distorting 

gas-jet-modulated liquid film. 

Figure 11: Effect of decreased vertical gas-jet momentum (Mi = 0.5 on discharging sinusoidally 

distorting gas-jet-modulated liquid film. M|| = 1). 
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Figure 12: Effect of decreased gas-jet injection angle a {a = 30°, M = JM^ + M]_ = ^/2) on 

discharging sinusoidally distorting gas-jet-modulated liquid film. 

Figure 13: Effect of decreased gas-jet injection angle {a = 15°) on discharging sinusoidally dis- 

torting gas-jet-modulated liquid film. 

Figure 14: Effect of increased vertical gas-jet momentum (Mx = 5) on discharging sinusoidally 

distorting gas-jet-modulated liquid film. 

Figure 15: Effect of increased parallel gas-jet momentimi (M|| = 5) on discharging sinusoidally 

distorting gas-jet-modulated liquid film. 

Figure 16: Effect of increased gas-to-liquid density ratio {pg/pi = 0.006) on discharging sinu- 

soidally distorting gas-jet-modulated liquid film. 

Figure 17: Effect of decreased pulse period {Tp = 2.5) on discharging sinusoidally distorting gas- 

jet-modulated liquid film. 

Figure 18: Effect of non-zero time-independent gas-jet velocity on discharging sinusoidally dis- 

torting gas-jet-modulated liquid film {Tp = 5; u'g.o = 0.5ug.o,Ug.3{t) — 0.25). 

Figure 19: Effect of increased pulse period {Tp = 8.75) on on discharging sinusoidally distorting 

gas-jet-modulated liquid fihn with underlying non-zero gas-jet velocity Ug-a. 

Figure 20: Effect of increased pulse period {Tp = 20) on discharging sinusoidally distorting gas- 

jet-modulated liquid film with underlying non-zero gas-jet velocity Ug-^. 

Figure 21: Dimensionless growth rate Im[a;/(A;i!7o)] as function of kh = 2Trh/X for planar liquid 

film with co-fiowing gas streams (at relative velocity UQ) and We = piU^h/a = 971 

and pg/pi = 0.0012. 

Figure 22: Influence of domain length {xjnax/h = 250) on discharging sinusoidally distorting gas- 

jet-modulated liquid film with underlying non-zero gas-jet velocity Ug-s. 
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Figure 23: Sinusoidally distorting liquid-phase-modulated film according to Eq. (10), with or with- 

out adjacent constant velocity gas streams and under base-case parameter conditions: 

sjh = Hlh = 10, pglpi = 0.0012, We; = 10, Mx = My = 1, Tp = 5. Ug., = 0: i* = 9 

(dashed), 19 (solid); Ug., = 0.45: t* = 9 (dotted), 19 (dash-dot). Without continuous 

gas jets, energy input is 5% of that in Fig. 5. 

Figiirc 24: Sinusoidally distorting liquid-phase-modulated film according to Eq. (10), without 

adjacent constant velocity gas streams and under base-case parameter conditions: 

s/h = H/h = 10, pg/pi = 0.0012, Wej = 10, Mj. = M|| = 1, Tp = 5. Energy 

input is twice that of Fig. 23. 

Figure 25: Dilationally distorting liquid-phase-modulated film according to Eq. (10) injected into 

a quiescent ambient gas under base-case parameter conditions: s/h — H/h = 10, 

Pg/pi = 0.0012, We; = 10, Mx = My = 1, Tp = 5. Energy input is 5% of that in Fig. 5. 

Figure 26: Dilationally distorting liquid-phase-modulated film according to Eq. (10) with adjacent 

constant velocity gas streams and under base-case parameter conditions: s/h = H/h = 

10, pg/pi = 0.0012, Wei = 10, Mx = M|| = 1, Tp = 5. Energy input from direct film 

modulation equals that in Fig. 25. 

Figure 27: Phase plot for y(i') at x/h = 12.5 according to the case shown in Fig. 11. (Nondi- 

mensional time t* progresses in the clockwise direction.) 

Figure 28: Phase plot for y{t*) at x/h = 12.5 according to the case shown in Fig. 11. 

Figure 29: Phase plot for y{t*) at x/h = 25 according to the case shown in Fig. 11. 

Figure 30: Phase plot for y{t*) at x/h = 25 according to the case shown in Fig. 11. 

Figure 31: Phase plot for y{t*) at x/h = 12.5 according to the case shown m Fig. 23 without 

co-flowing gas streams. 
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Figure 32: Phase plot for y{t*) at x/h = 12.5 according to the case shown in Fig. 23 without 

co-flowing gas streams. 
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FIGURES 

FIG. 1. Mehring, Phys. Fluids 
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Initialize 

■ Liquid phase: y.(x,t=0), u(x,t=0) 
Gas phase: 3(j)/3n or (j) along boundary r 
including the liquid-gas interface ^^^ 

Solve: 7% = 0 

in the gas using cun-ent 
interface location T.^ and d/(|)/6n along r|„, 

Solve: 8(|,/3t +1/2 (Vcj))' = 1/p, (p^. - pj 

for Pg at T^ using <{>, at time-steps n and n+1 

Solve liquid-phase equations 
[ e.g. for the diiational mode: 

ah/3t + a(uh)/3x = 0 
3u/3t + u au/3x = -1/pi a(Pg+pJ/9x ] 

to determine interface location T.^^ ory =h(x,t) 
and d(|)/5n along Tj^, at the new time step n+1 

Update time step: 
n = n+1 
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Abstract 

The linear and nonlinear distortion and breakup of three-dimensional swirling or 

non-swirling annular and swirling conical thm inviscid liquid fihns are analyzed by 

means of a reduced-dimension approach. The films discharge from an annular slit 

nozzle or atomizer mto a gas of negligible density at negligible gravity conditions. 

Nonlinear numerical simulations describe film distortion up to the time when film rup- 

ture first occurs. Linear and nonlinear solutions are presented and discussed for variotis 

configurations and with either dilational or sinuous three-dimensional modulations im- 

posed onto the fihns at the nozzle exit. Nonlinear growth rates can be significantly 

larger than predicted by hnear theory. Initially axisymmetric disturbances remain ax- 

isymmetric and fluctuations in the circumferential direction generated by numerical 

error are aot ampUfied for the considered cases. Overall film topology at the time 

of fihn rupture suggests that single dilational or sinuous oblique waves will result m 



spiraling filaments detaching firom the continuous film. Combination of clockwise and 

counter-clockwise travelling dilational waves results in an approximately rectangular 

array of larger ligaments interspaced by thin fluid films indicating subsequent cellulax- 

type breakup for both annular and conical configurations. Results for similar sinuous 

mode modulations suggest film disintegration via shedding of continuous annular rings 

firom swirling annular films and filament shedding from swirling conical films. 

Introduction 

The stability of liquid sheets plays an important role in various technological applications 

including spray combustion of liquid fuels in furnaces, internal combustion piston engines, 

jet engine combustion chambers and rocket motors [?]. The combustion of liquid fuels in the 

described applications is frequently achieved through the generation and disintegration of 

swirling conical liquid films [2]. The stability of annular films is of relevance in applications 

such as film shell encapsulation or shell formation, film blowing, as well as in the use of 

collapsing annular films as chemical reactors for toxic waste incineration. 

Experimental observations of disintegrating conical liquid sheets have already been de- 

scribed by various authors. See Ref. [3] for a more detailed review. Theoretical analyses of the 

phenomenon of liquid-film breakup were in general limited to linear planar or annular sheet 

configurations; the latter with or without swirl [4]. In particular, linear three-dimensional 

analyses of planar or swirling annular sheets were only presented bv Ibrahim and .A.kpan f5l. 

Ponstein [6] and Panchagnula. Sojka and Santangelo [4]. A linear analysis of swirling conical 

sheets poses a variable coefficient problem, and has not. to the knowledge of the authors. 



been presented in the literature. The few nonlinear analyses presented on the subject were 

also limited to the planar geometry [7, 8, 9, 10, 11], annular sheets, or liquid bells without 

swirl [12, 13, 14, 15]. A nonlinear analysis of truly three-dimensionally distorting (swirling 

or non-swirling) annular and swirling conical films discharging from a nozzle or atomizer and 

subject to dilationai or sinuous modulations at the nozzle exit has not been presented so 

far, even though the prescribed configurations (in particular swirling conical liquid films) are 

of importance in practical atomization systems, such as swirl-cup atomizers or pre-filming 

atomizers. 

Linear and nonlinear analyses of discharging, modulated, pressure-stabilized, thin annu- 

lar liquid films were presented in Ref. [17]. The linear analysis predicted that, in general, film 

modulation generates four dilationai and two sinuous mode wavenumbers. Group velocity 

analysis (with terms of 0{R~^) neglected) and consideration of the Sommerfeld radiation 

condition downstream lead to the conclusion that only two dilationai mode wavenumbers 

will appear on the discharging film (^2 and ^3 in Ref. [17]). For sufficiently large forcing 

frequencies u or Weber numbers We (based on liquid density, undisturbed film thickness 

and undisturbed liquid velocity at the nozzle exit), wavenumber k^ resulted in an exponen- 

tially growing dilationai mode wave whereas k2 (its complex conjugate value) resulted in 

an exponentially decaying disturbance downstream. Linearly unstable sinuous mode waves 

are predicted only for Weber numbers We > 2 at forcing frequencies u < {1/R)^^l - 2/We, 

i.e. where wavenimiber I2 resulted in an exponentially growing wave and li (the complex 

conjugate of ^2) produced an exponentially decaying disturbance downstream. For small 

Weber numbers, i.e. We < 5, nonlinear and linear numerical simulations of the initial and 

boimdary-value problem were dominated by transient effects. In particular, film collapse and 



bubble formation was observed to occur near the wavefront as the initial film disturbance 

propagated into the undisturbed film. In Ref. [3] axisymmetric, swirl-stabilized annular film 

were analyzed. According to linear analysis and in contrast to the pressure-stabilized case, 

no pure dilational mode is found on swirl-stabilized annular films. For swirl-stabilized films 

_ collapse of the undisturbed annular configuration is prevented by the centrifugal forces result- 

ing from the swirling motion; for pressure-stabilized (non-swirling) annular films, a constant 

positive pressure difTerence is maintained between the inner core and the surrounding of 

the annulus in order to prevent the film from collapsing on itself due to surface tension. 

In the pressure-stabilized case, linear mode-coupling occured solely from the sinuous to the 

dilational mode via the conservation-of-mass equation. Nevertheless, for large enough We- 

ber numbers and low forcing frequencies, linear dilational or predominantly dilational mode 

waves behave qualitatively the same on both pressure- and swirl-stabilized films. However, 

the instability range and imstable growth rate for linear "dilational" waves is significantly 

larger for swirl-stabilized films in comparison to pressure-stabilized ones, i.e. oji^^ > ui^p with 

ui being the forcing frequency at the stability limit and subscripts s and p denoting swirl- and 

pressure-stabilized films, respectively. A significantly larger growth rate of "dilational" mode 

waves on swirling axisymmetric annular films has also been observed in the comparison of a 

dilationaUy modulated nonlinear swirl-stabilized film and a similar pressure-stabilized films 

[3]. Qualitative differences between linear "dilational" mode waves on swirl- and pressure- 

stabilized annular films were found at increased forcing frequencies, e.g. uj > 0.6 (for large 

Weber numbers), and even at lower forcing frequencies if the Weber numbers were small 

enough.   However, in the parameter and comparative numerical studies of Ref. [3], cases 

with large modulation frequencies were not considered due to the limitations of the em- 



ployed thin film model. Small Weber number cases were also excluded from the analysis, 

due to the dominance of transient effects in the corresponding numerical simulations. In 

strong contrast to pressure-stabilized films, where linear theory predicts that unstable sinu- 

ous waves are only found for Weber numbers We > 2, predominantly sinuous-mode unstable 

_waves on swirl-stabilized films are only observed for We < 2. However, as in Ref. [17] and 

due to the dominant behavior of transient effects within the numerical analysis, swirling 

annular (or conical) films at small Weber numbers were not studied in Ref. [3]. Rather, the 

parameter studies of Ref. [3] (analyzing the effect of Weber number, modulation amplitude 

and swirl number on breakup time and breakup length) were conducted around four annular 

(e.g. swirl number A; = 1) base cases with modulations of the axial or transverse film ve- 

locity at the nozzle exit at We = 100 and forcing frequencies CJ < 0.42. The linear analysis 

of Ref. [3] was constrained to swirling axisymmetric annular films. Initial conditions for the 

numerical simulations of axisymmetric swirling conical films in Ref. [3] were obtained by inte- 

grating the nonlinear steady-state equations from the nozzle exit with appropriate boundary 

conditions at the nozzle and a 4th-order Runge-Kutta integrator. Modulation of the axial 

and/or transverse film velocity were of the form v^^^ = A^^r [l - e'^'^'^A sin (27rt*/Tp) with 

the nondimensional time-period of the harmonic forcing Tp and the nondimensional forcing 

amplitudes of the axial or transverse velocity modiilation A^^r- 

A brief discussion on three-dimensionally modulated swirling annular and conical films 

was included in Ref. [3]. However, this discussion was limited to the numerical solution 

of initially axisymmetric film modulations or axisymmetric modulations with superimposed 

small-amplitude circumferential disturbances. Three-dimensional solutions, for sheets with 

axisymmetric modulations only, remained axisymmetric throughout the simulations, indi- 



eating that small perturbations due to numerical error do not result in a three-dimensional 

capillary instability. For the considered annular and conical films with harmonic forcing of 

the axial or transverse velocity, the characteristics of the film distortion remained predomi- 

nantly axisymmetric. 

The present analysis extends the three-dimensional discussion of Ref. [3] by considering 

film modulations which result in truly three-dimensional film distortion and rupture, as 

well as by incorporating a detailed description of the three-dimensional model. In addition, 

the present analysis includes a three-dimensional linear spatial analysis of swirling annular 

films. In analogy to the axis3rmmetric analysis of Ref. [3], the linear analysis 1) identifies the 

appropriate number of boundary conditions for the numerical simulations and 2) identifies 

the magnitude and importance of nonlinear effects by comparison between linear analytical 

and nonlinear numerical results. Analogous to previous work by the authors [3, 7, 17, 18, 

19], group velocities of the capillary waves emanating from the modulated nozzle and from 

downstream are obtained from the linear analysis and are used to identify the number of 

boundary conditions to be specified at the atomizer exit and the number at downstream 

infinity for both linear and nonhnear analyses. 

In the analysis of thin liquid sheets or films presented here, only capillary and inertia 

effects are considered. Subsequently, the term 'annular' refers to thin-walled cylindrical 

liquid columns with approximately ring-shaped cross-sectional area of constant time-averaged 

radius along the axial direction. Sheets or films which roughly resemble hollow cones, i.e., 

thin-walled hquid columns with monotonically increasing or decreasing annular radius of 

the ring-shaped cross-sectional area, are named 'conical' sheets. Clearly, sheets or films 

discharging from an annular nozzle and with a monotonically increasing or decreasing annular 



radius within the region near the atomizer are still described as being 'conical' even if the 

annular radius undergoes oscillations further downstream. The latter phenomenon might 

occur due to the dynamic exchange of translational or rotational kinetic energy and potential 

or surface energy. 

Problem Formulation 

The present work extends previous work by the authors on non-swirling annular and swirling 

conical sheets. [3, 16, 17, 18, 21]. Considered are semi-infinitely-long thin swirling (or non- 

swirling) liquid films exiting from an annular nozzle or atomizer as shown in Fig. 1. 

Three-dimensional dilational and sinuous disturbances are considered. Liquid viscosity 

is neglected and the sheet is exiting into a void under negligible gravity. The assumption of 

thin sheets allows the reduction of the dimensionality of the problem by integrating across 

the thickness of the sheet. This approach, also referred to as the lubrication approximation, 

has been employed by Ramos [14] and by the authors [3, 7, 16, 17, 20] for the analyses of 

thin planar and axisymmetric annular sheets without swirl, as well as axisymmetric swirling 

conical sheets. 

Only spatial film stability or film distortion will be of interest here. The spatially periodic 

temporal film distortion and film stability is not relevant to the conical sheet with its varying 

radius. The temporal instability can apply to the annular cylindrical sheet and for the 

radially expanding sheet. 



Governing Equations 

The goveming equations, describing the unsteady motion in an incompressible, inviscid 

three-dimensionally distorting liquid sheet under zero gravity and in a cylindrical coordinate 

system, are given by 

|k + |i + ]t + l^ = 0 (1) 
oz      or      r     r ad 

dVr dVr dVr        1      S^r       ^fl 1 5p ,„, 
ot oz or     T    ad      T par 

dVg dVg   ,        dve        I     dVg       VrVg 1   dp ,   . 

at az or      T    ad        r proa 

where Uz, Vr and vg are the velocity components in the axial (z-), radial (r-) and circumfer- 

ential {6-) directions, respectively. See Fig. 1. p and pi denote the pressure and the density 

of the liquid. 

Indicating the outer and inner location of the sheet by r+{z,i) and r^{z,t), we define 

the radial centerline position and the thickness of the sheet by f{z,t) = (r+ + r_)/2 and 

Ar(z,t) = r+ — r-. The pressure and the radial velocity component at the fluid interfaces 

{p±,Vr,±) are given by the following kinematic and dynamic boundary conditions, 

dr± dr±     1       dr->, ,.. 
Jt a:        !' uo 



P± = Pg,± ± <7K± ^g^ 

where the local curvature «± is given by the divergence of the unit normal vector at the 

particular location of the outer (+) or mner (-) sheet interface, i.e. K± = V • n±. In the 

previous equation pg is the pressure of the surrounding gas and a denotes the surface tension 

coefficient of the Uquid. For non-swirUng annular sheets pg,+ = 0 but p^ _ ^ 0 in order to 

stabilize the annular sheet in its undisturbed configuration. The latter is also referred to as 

'pressure stabilization'. See Ref. [17] in this context. This contrasts with 'swirl-stabilized' 

annular or conical sheets, where p^,± = 0 and stabiUzation of the undisturbed (unmodulated) 

sheet is obtained by balancing surface tension forces with the centrifugal forces due to swirl. 

Clearly, gas-phase effects are not included in the present analysis. The pressure in the gas 

surrounding the considered liquid films is assumed constant because at atmospheric pressure, 

the gas density is negligible compared to the liquid density.  The influence of a gas-phase 

flow field surrounding discharging planar liquid films has been analyzed by the authors for 

the case of a two-dimensional twin-fluid atomizer [20]. 

Expanding the dependent variables in terms of r - f (x, t) and employing a similar expan- 

sion for 1/r, one obtains the following system of equations for f, Ar and the leading-order 

expansion terms of the velocity components v,, Vr, ve, i.e. uo, vo and i^o, respectively 

dAr      diuoAr)      Ar \ d{Arwo) 



df df Idf 

"° = a^+"°a;-'^°F5e (8) 

duQ        duo     1    9uo 1 

P 

dp      .    f 1 df      1 5Ar' 
az \Ar52     4r Sz (9) 

9r^        9uo     Wo dvo     WQ _    1 Ap 

at     °'dl'^ Tie ~ T ~ ~'^A^ (10) 

5iUo Szwo     luo 5iuo     Wo uo 
dt dz       r   89 pr 

dp     Apdf 
(11) 

with 

_ P++P-      cr r_   ^       ^   ^ 1 

Ap   =   p+ - p_ = cr [V • n+ + V • n_] 

whereby the divergence of the normal vector at the outer and inner interfaces at a specific 

location (^oj-^o) is evaluated from 

V • n   =    (1 - -rge - r^ - rr,, ] [r^ + Q 
-1/2 

re 
9T 

+ T h' + ^ 
TT -3/2 

2rg 
r 
2r. 

2r«r93 + -^Q + 2r-r.r.. 
r 

(12) 

(13) 
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whereby Q = r^{l + r^) and r = f± Ar/2. 

Equations (7) through (11) form a closed system of partial differential equations which 

together with appropriate boundary and initial conditions govern the three-dimensional non- 

linear distortioa of thin swirling liquid films exiting from a nozzle or atomizer into a void. 

For the subsequent analyses, the above equations have been nondimensionalized by using 

the undisturbed film thickness and film discharge velocity at the nozzle exit, i.e. Aro and 

v^fl, as characteristic length and velocity, respectively. The Weber number in the resulting 

nondimensional equations is given by We = piVz^QAro/a. 

Governing equations for the nondimensional linearized problem have been obtained by 

introducing 

Ar* = l + h,f* = R + T],ul = l + u*,v^ = V + v*,w^ = W + w* 

into the nondimensional form of Eqns. (7) through (11). In the above equations, h and 7/ de- 

note nondimensional fluctuations in the film thickness and transverse film centerline location, 

respectively, u*, v* and w* represent nondimensional fluctuations in the axial, transverse and 

circumferential velocity components.   We define e = l/\/2We.  Within the present analy- 

sis, y = 0 and W = 2eR {R^ — 0.25)"°'^ « 2£-; the latter represents the nondimensional 

swirl-velocity which stabilized the undisturbed annular film with nondimensional radius R. 

The linearized system of equations becomes 

dh      dh      du"             1    ,     1  f„^5/i     dw'] ,,,, 
 1 1 = V < W ! \                     (14) 
dt'   dz'    dz' R       R\   de    ee \ .       ' 
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du*     du*     Wdu" 
dt* "*" dz^ "*" 'R'W 

dv*     dv'     Wdv*     2„,   .     W^ 

dw*     dw'     Wdw* 

= £ 
d^h      1 

+ 
dh       d^h 

+ 
dz*^    B? \dz*     de^dz 

=   4^2 
■ a^T?    1 /    dhi\   1, 

dt'      dz' R 89 R'" '^ R\ dz'^de ^ Rde 
d-q       d-q      W d-q 

=   V 

(16) 

(17) 

(18) 

where terms of 0{R~^) have been neglected and where t* denotes nondimensional time 

and z* represents the nondimensional axdal coordinate. Note that, the radiant 9 is already 

nondimensional. Eqns. (14) to (18) apply in the pressure range where gas density is negligibly 

small and the effects of gas inertia can be neglected. Solutions to Eqs. (14) - (18) are assumed 

to be of the form 

h   = 

u     = 

V   = 

V'    = 

w     = 

j^ ^i(kz-+ne-uf) 

^ gi{kz-+ne-ujf) 

^ ^i(kz-+nB-u,f] 

Agi(kz-+n6-^f) 

(19) 

Substitution of Eqns. (19) into Eqns. (14) - (18) provides the dispersion relation governing 

die propagation ofcapillary waves on the [uudulated tiini. i.tv 
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{a''-bg)[2ce-{g + e{f- e/4)) (2/ - e)] 

+ cnk'^ [c'/2 ^^2 ^^g^+na{g + e{f- e/4))] (20) 

- ca [2/e + (2/-e)^ + 4^]   =   0 

with 

a   =   —n — [oj — k) 
R 

b = k^- 
■^^'- 

-r?) 

c = 

e = (jj — k 

f = e 

9 = s'e 

Note that k and n denote the wavenumbers of capillary waves propagating in the axial 

and circumferential direction, respectively, a; represents the angular frequency at which 

modulations are forced onto the discharging film at the atomizer exit. 

Analogous to previous work by the authors, evaluation of the group velocity for wavenum- 

bers ki, i.e. C{ki) — da;/dRe[A;^] can now be used to determine which disturbances generated 

by the nozzle modulation at frequency a; will be found downstream. In particular, if the group 

13 



velocity for a particular axial wavenumber is positive, then that wavenumber will be found 

further downstream, if the particular wavenumber has negative group velocity, then the cor- 

responding disturbance will not be found downstream from the nozzle since no modulation 

is applied downstream. The latter is effectively a representation of the Sommerfeld radiation 

condition which implies that no energy is propagated upstream from infinity [7, 17]. Note 

that after film rupture the discharging film will have finite length which, necessitates a recon- 

sideration of the downstream boundary condition. In that case, the rejection of wavenumber 

solutions with negative group velocity based on the application of the Sommerfeld radiation 

condition is no longer valid. 

Equation (20) is the dispersion relation for linear three-dimensional capillary waves on 

thin swirling annular films discharging into a void and in a reference frame fixed to the nozzle 

exit. 

Assuming exponential solutions for h, 77, u*, v* and w* according to Eq. (19), the general 

solution to the boundary-value problem for a given forcing frequency a; and circumferential 

wavenumber n is given by 

i=i 

7/(2*, r)   =   X^^nje'^*"'^"''"''*"''''^ 

5 

7=1 
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w 

(22) 

where the index j = 1,... 5 refers to the 5 wavenumber solutions to the dispersion relation for 

. a given forcing frequency u and circumferential wavenumber n which have to be considered 

within the present analysis according to the employed parameter range and the discussion 

of the previous paragraph. These wavenumber solutions are kz, ks and k^ — kj, respectively. 

The unknown coefficients within the above solutions depend on each other according to 

iPj 0 ik, iZ-i inR-^ 

i£% [qj - ^' -•^^i iPj 0 0 

4e' 
R 4£^9i 0 iPj 

4e 
~R 

0 ipj 0 -1 0 

»^"fe-sf: 
■ 4e^ 0 2e 

R iPj 

r                   -] r       -I 

^h,i 0 

^VJ 0 

^*1j 
= 0 

"■"'li 0 

■"-"''J 0 

(23) 

M 

with pj = [ Jn - (cj - A:^)] and QJ = [kp + ^n^] for j = 1,..., 5. The above system of 

equations is obtained after substituting Eqs. (21) into Eqs. (14)-(18). Eqs. (23) are linearly 

dependent since det[M] = 0 and can be reduced to 

^hd Sj + Ae^k]/[Rp^] 

A,j- Ep^/2-e'kyv^[qj-R-^\ 
(24) 

•^"" j 

-4.J 

1 
ekj 

^Pi/2- 
., - ^^'k]l[Rp,, 

■p^n-e'kyvMi-R-^] 
+ s. (25) 
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-^v* j"   _ 

■^vJ 
= ipj (26) 

Ar^-j ^ n[qj - R-^][e^k^ + en/R{uj - k^) - {u - fe,)V4] - 2e{uj - k,)IR 
A,^ en/R[q,-R-']-p^ ^^'^ 

withpj and gj as defined above and Sj =Ti£^{k'j+2R~'^)-{€/R){(jj-kj){l-n)-{n/4){uj-kjy. 

This provides four independent equations for the five unknown coefficients of each index 

j = 1,..., 5. Altogether, this yields twenty independent equations for twenty-five unknown 

coefficients. The remaining five conditions needed in order to determine fully the unknown 

coefficients are given by the boundary conditions specified at the nozzle exit, i.e. one condition 

for each of the five wavenumbers A;2,3 and A;5_7 with positive group velocities. 

Results and Discussion 

Linear Analysis 

Relevant Waveniiinber Solutions / Wave Character 

Eq. (20) has been solved for wavenumbers A;, at given values of Weber number We or 

e and circumferential wavenumber n. Solutions to the dispersion relation were obtained 

numerically by using Mathematica-^'^. Evaluation of the corresponding group velocities 

C{ki) = da;/dRe[A;j] predicts that for u < 0.6 and small n-values (< 8 for We = 5 - 1000 

and beyond), information travels in the same direction as in the axisymmetric case: Five 

wavenumbers correspond to waves that originate at the nozzle and send information in the 

downstream direction (later denoted by A;2,3 for dilational mode waves and k^-- for sinuous 
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mode waves) and two (dilational mode) wavenumbers correspond to waves which, originate at 

downstream infinity that send information upstream (later denoted by ki,k4), according to 

their positive and negative group velocities, respectively The subscript i is an integer index 

that indicates the particular wave number. Previous analyses of non-swirling axisymmetric 

_ discharging annular films indicated the existence of only four wavenumbers with positive 

group velocity [17]. In the present case, modulation of the swirl velocity allows for the 

existence of one additional wavenumber solution with positive group velocity. 

Figs. 2, 3 and 4 iUustrate the solutions to Eq. (20) obtained by Mathematical^ plotted 

over n and a; for £• = l/VlO and iE = 10. Each of the various computed solutions might 

represent a different wavenumber in a different parameter range {u, n). After combination of 

the various branches from the different solutions in order to represent the seven wavenumber 

solutions ki{i = l,...,7), one observes that, wavenumber plots ki{ui) for non-axisymmetric 

cases with n < 5 will resemble the axisymmetric result (n = 0) qualitatively The described 

collection of branches into the different wavenumber solutions was guided by comparison with 

the wavenumber solutions previously determined for non-swirling annular films (see Figs. 3 

and 4 of Ref. [17]). Fig. 5 displays wavenumbers ki as a function of u for the n = 3 case. 

For w < 0.7 dashed and solid lines illustrate predominantly dilational mode waves (Jfci_4), 

whereas dotted and dash-dotted lines denote predominantly sinuous mode waves (ks^ and 

kj). For larger Weber number cases (e.g. We = 1000) and n < 8 the functional dependence 

of wavenumbers ki on forcing frequency is similar to the We = 5 case illustrated here, even 

though absolute values might be quite different. Note that pure dilational or sinuous waves 

only appear as the planar film limit R ^ GO is approached. Prediction of the wave-character 

(i.e., dilational or sinuous) is made via evaluation of the amplitude ratio /I^/T/? which is 
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independent of the imposed upstream (or nozzle) boundary conditions, i.e. 

h°i      „ \   2              ,9 (uJ-ki)^] 
-k = R -^ + ^,- - 
V^ [R^      ' 4£2       J 

(28) 

Evaluation of lin[ki] and consideration of C{ki) = da;/dRe[A;i] shows that for the case 

illustrated in Fig. 5 no sinuous mode wavenumber (dotted and dash-dotted lines) is to be 

rejected (i.e. C{k5-r) > 0) and no imstable "sinuous" mode wavenumber exists. The same 

is true for the axisymmetric mode and non-axisymmetric modes (with n < 8) of the similar 

case (i.e. R=lO,e = l/\/lO or We = 5) (see Figs. 2-4). Only one of the four "dilational" 

mode wavenumbers, namely kz, produces exponentially growing solutions in the downstream 

direction. In Fig. 5, this wavenumber case is indicated by the solid line. 

Fig. 6 illustrates the growth rate for the described unstable predominantly dilational 

wave Ala as a function of modulation frequency and circumferential wavenumber n for the 

particular case of We = 1000 (or e = 1/V2000) and i? = 10. From Fig. 6 and similar results 

for various other combinations of We and R, we observe that for large Weber numbers, the 

instability range of the unstable dilational mode wave decreases with increasing n-values. For 

unstable behavior and large u values, the growth rate decreases with increasing n values. 

In fact, for large enough n-values, no film instability might exist. However, for unstable 

behavior at small u values, the growth rate is found to increase with increasing values of n 

until for large enough n-values, the growth rate drops down to zero. 

As rhe \Vt'bi-r miinbt'r is decrpaspd f,it fixed /?-v;ilu(>si. rhe inaxiinuni ATOwrh rare of the 

unstable dilational-mode wave is increased. Compare Fig. 6. Fig. 7 and Fig. 8 for We = 

1000. 50 or 5 and R = 10. respectively. Fig. 8 also illustrates that for small Weber numbers. 
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and small enough n-values, the mstabiUty range of non-axisymmetric modes (n i=^ 0) is larger 

than for the n = 0 case. However, as m Figs. 6 and 7, for a given parameter set R and We 

the maximum growth rate is still observed for the axisymmetric (n = 0) case. 

For the same case as depicted in Fig. 7, Fig. 9 shows the dependence of the wave angle 

_d5,/dz = -kijn for the unstable predominantly dilational wave (i = 3) on the circumferential 

wavenumber n. The magnitude of the wave angle is found to decrease with increasing n- 

values and at fixed w-values, except for small values of w. Also, |d^/d2| increases essentially 

linearly- with a; at fixed n, except for small uj values. In the latter case, the considered 

unstable dilational-mode wave has negative wave velocity but positive group velocity, so 

that the winding of the helical structure generated by the wave changes from clockwise to 

counter-clodcwise. This behavior has also been observed within the numerical analysis of 

the corresponding initial-and-boundary-value problem. 

Linear Field Solutions 

Solutions to the linear boundary-value problem discussed earlier were obtained for the 

case where the five boundary conditions at z* = 0 are given by harmonic variations imposed 

onto variables h,ri,u*,v* and w* according to e'("''-<^*") with complex forcing amplitudes 

denoted by h'^, 7]°, u°, v° and w°. For the purpose of validating the numerical analysis pre- 

sented below and for the purpose of identifying the influence of nonlinear effects on the 

growth of unstable waves (via comparison between linear analytical and nonlinear numer- 

ical results'). the linear problem was solved for the rase where nnlv the unstable dilational 

mode wavenumber k-^ is being generated at the nozzle through modulation of the film thick- 

ness, i.e. /).fr* = O.r) = h° cos(nd -mt").   .A.ccordingIy. the above equations are solved 
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for the complex forcing amplitudes T]°,U°,V° and w°. In particular, coefficients pertaining 

to wavenumbers other than ^3, i.e. ^,,^562, Aj5i2,>lu-jji2,^-j#2 and A^.j^j, are zero and 

A/1,2 = h°. Coefficients Ar,^2,Au',2,Ay.^2 and A^-^ are readily determined from Eqns. (24) 

through (27). Table 1 lists the various nonzero coefficients (normalized by h9) for the cases 

_ which have been used to compare linear analytical and nonlinear numerical solutions. 

Nonlinear Analysis 

The governing equations for the nonlinear three-dimensional distortion of swirling annular or 

conical liquid sheets have been solved numerically by using the Law-Wendroff Method with 

Richtmyer splitting [22]. Initial conditions for the transient simulations of svsrirling and non- 

swirling annular films are trivial (Ar(z, t = 0) = Aro, f{z, i = 0) = FQ). The initial film shape 

for swirling conical films (discharging from the nozzle with more swirl than needed to stabilize 

the film in its annular positions) was obtained by integrating the nonlinear axisymmetric 

film equations in the downstream direction starting at the nozzle exit. See Ref. [3] for more 

details. Modulations of the dependent variables Ar*,f*r,UQ,VQ and WQ were imposed at the 

nozzle exit (z* = 0) in order to generate: 1) The unstable "dilational" mode wave predicted 

by linear theory (annular case only) and 2) a system of standing and/or travelling waves 

(annular and conical case). The former provides a dynamically simple system, which eases 

the comparison between linear and nonlinear theories. The latter case has been considered in 

context with the active control of the film disintegration process; it represents a dynamically 

complex system. 

For both swirl-stabilized annular and 'conical' sheets, the number of boundarv conditions 
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at the nozzle exit was chosen according to the number of wavenumbers ki with associated 

positive group velocities, relevant to the linear boundary-value-problem analysis presented 

earlier for swirl-stabilized annular films, i.e. five boundary conditions were imposed at z* = 0. 

Analogous to the analysis of swirling axisymmetric films [3], boundary conditions at the noz- 

_zle exit for nondimensional sheet thickness Ar', radial sheet-centerline location T, and the 

velocity components in the axial, radial and circumferential direction UQ,VQ and WQ were 

chosen according to the described steady-state solutions, but with additional harmonic vari- 

ations of the film thickness or the axial, circumferential and transverse velocity components 

generating axisymmetric or three-dimensional standing and/or travelling sinuous or dila- 

tional mode waves. 

As in Ref. [3], additional numerical boundary conditions (required to solve the unsteady 

problem) were specified for S^Ar'/Sz*^ and 5^r*/5z'2 with values corresponding to the 

imposed steady-state initial conditions. 

In summary, for the analysis of the considered unsteady problem, five boundary condi- 

tions and two numerical conditions were specified at the nozzle exit. 

Parameter Range and Forcing Conditions 

Analogous to previous work by the authors, and in order to omit the dominance of tran- 

sient effects in the majority of the nonlinear numerical simulations, the present numerical 

study was limited to large Weber number flows, i.e. We = 50 or We = 1000. Values for the 

radiiis-to-thicknpss ratio of the disrharffinsr films, as well as values for the impospd rirnim- 

ferential wavenumber and forcing frequencies (determining downstream and circumferential 

disturbances) were chosen small enough to guarantee film rupture and/or the appearance of 
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significant nonlinear three-dimensional effects within a computationally feasible time frame. 

In addition the same parameters were chosen large enough so that the assumptions of the 

employed lubrication model are not violated. For all the results presented here, the nondi- 

mensional annular radius has been fixed at i? = 10. Results computed for cases with n = 1 

have not been included due to the delayed appearance of three-dimensional effects even at 

circumferential wave amplitudes comparable to those of the downstream-propagating waves. 

The analysis of conical films was limited to cases with swirl number k = 10, indicating that 

the liquid exits the annular slit nozzle with ten times the amount needed to stabilize it in the 

annular configuration. The steady-state cone angle in this case is approximately 44 degrees. 

Disturbance amplitudes in the various flow variables were chosen over a wide range. Small 

amplitude values were iised in order to benchmark the numerical model by allowing direct 

comparison between linear analytical and mmaerical results for a given set of boundary or 

forcing conditions. Larger amplitude values were chosen in order to predict the appearance 

of nonlinear effects and possibly film rupture near the nozzle exit. As noted before, early 

appearance of nonlinear effects and film rupture were essential in order to perform the nu- 

merous nonlinear quasi-three-dimensional numerical simulations in a reasonable time frame 

and at reasonable computational costs. Note that, in general, practical liquid film atomizers 

are designed (among other things) to achieve film rupture, disintegration and atomization 

at short distances from the atomizer nozzle. The latter being an important requirement in 

the design of more compact, i.e. shorter and lighter, combustion systems. 

Here, we focus on 1) a comparison of linear and nonlinear unstable dilational mode waves 

on swirling annular films and 2) a description of film topology and film rupture under a variety 

of forcing conditions resulting in standing and/or travelling sinuous and/or dilational waves 
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via modulation of various different flow variables, i.e. <f> = T], UQ, VQ, WQ. The general forcing 

condition for one of the flow variables <f> employed here is given by 

0 = $ + 0'[l-e(-'"/^')' M-7fr- + ff2{ne-j-^t)M—-) 
■Lp ItT J-p 

(29) 

Here, # represents the steady-state value of the particular flow variable, /i, /s and fz denote 

either sine or cosine functions. The parameter j takes the value 0 or 1 in order to model 

a standing or a travelling wave, respectively. The exponential term [1 — e^~**/^*)] assures 

a smooth start-up of the transient simulation preventing the film distortion process from 

being dominated by the dynamics of the initial wave-front propagating into the undisturbed 

semi-infinite film [23]. Tg denotes the characteristic time for the described staxt-up process. 

The various parameter combinations and forcing conditions which have been analyzed are 

summarized in Tables 2 through 8, together with data on film break-up time and length for 

the various cases. If film rupture did not occur within the computational time frame, min- 

imum film thickness and corresponding downstream location (at the end of the simulation) 

are tabulated instead. 

Single "Dilational" Wave Modulation 

Figs. 10 and 11 show the instantaneous film thickness as a function of downstream dis- 

tance for a swirling annular film with We = 1000, R = IQ and n = 0 or n = 3, respectively. 

The forcing frequency in both cases was u = 0.26 with /IQ = 0.35. Boundary conditions have 

been specified m order to generate the previously discussed unstable dilational wave only. 

For the axisymmetric case illustrated in Fig. 10 the nondimensional film breakup length (i.e. 

length measured from the nozzle exit to the first point of film rupture] is /J = 390.   The 
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rupture occurs at ij = 422.85 measured in nondimensionai terms. Comparison with linear 

analysis shows that the nonlinear growth rate (at z* = 300) is about 56 % larger than pre- 

dicted by linear theory. For the non-axisymmetric mode shown in Fig. 11, breakup length 

and time were predicted as /J = 245 and ij = 275.55, respectively. Here, the increase of the 

_ film thickness Ar^aa- is approximately the same as for the n = 0 case. On the other hand, 

the decrease of Ar^in in the downstream direction is larger for the n = 3 case resulting in 

shorter film break-up time and length. Wave angle measurements obtained from the the 

nonlinear numerical simulation shown in Fig. 11 agree very well with the wave angle pre- 

diction d^/dz = —k/n obtained from linear theory. In other words, constant film-thickness 

values are found along z = —{n/k)6 lines. 

Figs. 12 and 13 demonstrate film distortion and rupture for a a lower Weber number case, 

i.e. We = 50, at the same annular radius, forcing frequency and circumferential wavenumber 

as in Fig. 11 {R = 10, u = 0.26, n = 3). The disturbance amplitude in the fihn thickness 

for this case was h^ = 0.15. The lower Weber number results in an increased growth rate 

of the modulated unstable "dilational" wave. Consequently, breakup length and time are 

significantly smaller than for the similar larger Weber number case. In particular, ZJ = 95 

and ij = 115.2 for the case shown in Figs. 12 and 13. Observed growth of Ar^nox and decrease 

of Armin in the downstream direction correspond to the observation previously described for 

the larger Weber number case (Fig. 11). Also, distortion characteristics are not different 

from the larger Weber number case. It is noted here that, for the similar axisymmetric case 

(n = 0), film rupture does not occur within the simulated time frame (0 < t* < 150). 

The present nonlinear analysis considers an initial- and boundary-value problem. Film 

modulation is started at i* = 0 after which the front of the film disturbance is propagated 
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downstream into the undisturbed flowing film. As discussed earlier, the temporal growth of 

the propagating initial wave-front might dominate over the spatial wave growth; the latter 

resulting from continuous modulation at a prescribed forcing frequency. Comparisons of the 

corresponding film rupture lengths and times with predictions from linear spatial theory 

are not appropriate. The dominant behavior of the described transient effect is observed in 

Figs. 14, 15 and 16. for n = 0 orn = 3 with R = 10, uj = 0.06, We = 50 and Ar*° = 0.15. 

Even as transient effects dominate the film distortion process, non-ajdsymmetric disturbances 

provide shorter break-up length and break-up time. For the axisymmetric case in Fig. 14, 

film rupture does not occur within the simulated time frame, i.e. 0 < i* < 250. For the 

non-axisymmetric n = 3 case illustrated in Figs. 15 and 16, film breakup (dominated by 

"start-up" effects) is observed at l^ = 117.5 adn tj = 127.2. At the time of rupture, film 

distortion is highly nonlinear, particularly close to the propagating wave front. 

Multiple Dilational Wave Modulation / Wave System 

In order to investigate the feasibility of actively controlling the film disintegration process, 

film distortion and film rupture were investigated for the case where multiple superimposed 

waves are generated at the nozzle exit. 

Non-swirling Annular Films 

Fig. 17 illustrates the case of a dilationally modulated non-swirling (pressure-stabilized) 

annular film with a harmonic forcing imposed at z' = 0 according to 

u^[t') = l^A 
-t' 

1 -exp(—) 
2Tt' 

cos (no) sm (-^=—) (30) 
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1 - exp(—)J sin{nd) sin(-y-) (31) 

where t* denotes the nondimensional time variable, and 9 is measured in radians. For non- 

swirling annular sheets, stabilization of the undisturbed film is achieved by a nonzero constant 

pressure difference across the film, i.e. Pg- -Pg,+ = cr(l/ro,+ + 1/TQ-) = 2o-ro/(r^ - Arg/4), 

where the subscript '0' denotes undisturbed values at the nozzle exit. The Weber number 

for this case is We = 1000, the undisturbed annular film radius f^ = 10, Tp = Te = 10 and 

A = B — 0.04. Five (standing) waves have been imposed in the circumferential direction, i.e. 

n = 5. As observed from Fig. 17, the imposed film modulation results in the development 

of a regular cellular structure on the film in the downstream direction from the nozzle exit. 

As the amplitude of the film distortion increases, a system of fluid Ugaments forms. The 

ligaments axe elongated in the circumferential direction and are connected by a thinner film 

of liquid. Local maxima and minima in the film thickness alternate in the curcumferential 

direction and also in the downstream direction at constant ^-value. Points where the film 

breaks first (i.e. where it reaches zero thickness) are found at the same downstream location 

z* and located near the transitions between the thin film regions and the thicker ligaments 

resulting in the simultaneous formation of larger stretched free liquid ligaments inter-spaced 

by thinner fluid films. Both larger ligaments and thinner fluid fluid films are expected 

to contract towards a spherical shape due to surface tension (after being generated from 

the continuous film) and oscillate, due to the absence of viscous damping, around their 

spherical equilibnuiii shapes. A simple theureucal aiialviii, cuubidenuvi t.lie aspt.-ul of viscuuh 

dissipation in liquid atomization systems can be found in Ref. [24]. Note that the current 

implementation does not allow for continuation of die simulation beyond the point when the 
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film breaks at some location(s). 

Fig. 18 illustrates the similar (pressure-stabilized) case as shown in Fig. 17 but now with 

a three-dimensional sinuous modulation enforced at the nozzle. The behavior is generated 

by harmonic variations of the transverse film velocity according to 

Wo'(i*) = C 
■* 1 —t 

1 - exp (—) 
27rt* 

cos {n0) sin (^=r-) (32) 

with C = Q.ljTp = Te = 10 and n = 5. In this case, the initially regular three-dimensional 

sinuous disturbance flattens in the downstream direction, generating thicker fluid rings (with 

circumferential thickness fluctuations) which are connected by thin films of liquid- The ob- 

served change from a three-dimensional sinuous to a more or less axisymmetric dilational 

structure results from the development of nonlinear sinuous-dilational mode coupling down- 

stream, but is also related to the presence of multiple downstream propagating waves result- 

ing in am envelope behavior for film thickness and film centerline location in the downstream 

direction. The latter has already been described for non-swirling axisymmetric annular films 

[17] and was observed, for example, also in cases 2 and 3 of Table 6. As in the dilationally 

modulated case, film rupture is observed first between the larger fluid rings. The fluid rings 

themselves can be expected to break due to the dominance of the most unstable wavelength 

analogously to the Rayleigh instability mechanism for straight liquid jets [25, 26]. 

Swirling Annular Films 

Fig. 19 illustrates che film thickness distribution for a non-swirling pressure-stabilized 

annular liquid film, when the front of the disturbance generated by the modulation has 

propagated to about z' = 35 in the downstream direction. Problem parameters for this case 
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axe the same as for the case illustrated in Fig. 18. The film was. modulated according to the 

forcing conditions prescribed in Eq. (32). Fig. 20 shows the instantaneous thickness distri- 

bution at the same time for the corresponding swirl-stabilized case. Comparison of the film 

distortion for pressure-stabilized and swirl-stabilized films shows no significant differences in 

_the particular film thickness distribution. However, as already observed for axisymmetric 

films [3], disturbance amplitudes are significantly larger in the swirl-stabilized case, reducing 

the length between nozzle exit and downstream position where film rupture first occurs. 

Swirling Conical Films 

Fig. 21 shows the outer film surface location for the case of a swirling conical sheet 

generated by liquid which exits the annular slit nozzle with ten times the amount of swirl 

needed to stabilize the film in its annular configuration when exiting the nozzle. In other 

words, the swirl velocity for this case is ten times larger than for the case illustrated in 

Fig. 20. 

Initial conditions for this case were obtained by solving the nonlinear steady-state ax- 

isymmetric equations as described in Ref. [3]. The liquid film is modulated sinusoidally at 

the nozzle (z* = 0) according to Eq. (32). The Weber number for this case is We = 1000, 

R = 10 and Tp = Tg = 10. As in the previous case, 5 standing waves were imposed at the 

nozzle exit, i.e. n = 5, with C = 0.1. 

For the same case and at the same time, Fig. 22 shows the instantaneous film thickness 

distribution. Tntprpstins;]v. PLTPHS of thp film, with a lora! maximum of thp film thirknpss at thp 

nozzle exit develop into areas with two local maxima in the film thickness. The latter is not 

found for the similar swiriing annular sheet of Fig. 20 and results from the film divergence in 
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the conical case. Film divergence due to excess swirl also causes the regular cellular structure 

observed at the nozzle to stretch forming a net-like or web-like configuration of thicker fluid 

ligaments imposed onto a thinner layer of liquid (see Fig. 23). As previously described for 

non-swirling annular films, film rupture first occurs in the transition regions between the 

thinner liquid layers and the thicker ligaments. For both non-swirling and swirling annular 

films described earlier, initial film break-up points are located at the same downstream 

position and more or less symmetrically on both sides of the thin films or thicker ligaments. 

In. the swirling conical case, this symmetry is lost and initial rupture points axe found only 

on one side of the thin film regions, whereas the other side still remains connected to the 

neighboring larger liquid mass. Depending on the fiow conditions, the fluid within the thin 

films might be subsequently re-absorbed into the larger ligaments. Note that, for the annular 

films of Figs. 19 and 20, the continuous liquid film is expected to disintegrate initially into 

thinner liquid layers located between larger fluid ligaments. However, recombination of the 

larger fluid masses with the smaller ones is still possible due to different relative velocities 

of their center of gravity. The latter is analogous to the recombination of main and satellite 

droplets observed in liquid jet atomization processes such as ink-jet printing [27]. 

For larger disturbamce amplitudes, film breakup occurs close to the nozzle exit (see 

Fig. 24) with film distortion being highly nonlinear prior to breakup. For the case shown 

in Fig.24 fluid accumulates into spike-like structures with the possibility of drop generation 

before film breakup into larger ligaments occurs. It is conceivable that droplets ejected 

into the inner region of the conical film will impact onto the film causing film rupture and 

atomization at the downstream location where they have impacted. The relevance of the 

impingement of droplets onto discharging liquid films near the nozzle exit has already been 
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considered by other authors [28]. 

Clearly, m order to investigate liquid-film dynamics after initial break-up of the continu- 

ous film is predicted, the current model has to be extended to describe the dynamics of the 

newly generated free film edges. At the film edges, lubrication equations cannot be employed. 

_Rather, the authors envision a combination of a dynamic-film-edge model in combination 

with the current lubrication model away from the edges. Limitations of this combined model 

are reached when the thickness-to-length ratio of the retracting free liquid ligaments is of 

0(1). Also, as noted earlier, rejection of boundary conditions at the nozzle exit on the basis 

of the Sommerfeld radiation condition can no longer be employed after rupture of the semi- 

infinite film generates free ligaments and a finite-length continuous film is discharging from 

the nozzle exit. 

Summary 

Linear and nonlinear analyses of modulated three-dimensionally distorting thin inviscid free 

liquid films discharging into a gas of negligible density are presented. The nonlinear numer- 

ical analysis uses a lubrication model reducing the three-dimensional problem to a system 

of two-dimensional unsteady equations. Linear theory for swirling annular films predicts 

that for We > 2 only one unstable wave is generated on the film due to its modulation at 

the nozzle exit. Depending on Weber number and film radius, linear growth rates for this 

unstable diiaciotial luude wave iniulu bt; l.irgtT fur iujn-dxi.s\iunu'i;ru- inu<i('S tliaii f(;r clir 

corresponding axisymmetric case. However, for the considered parameter range, niaximuin 

growth rates for a given Weber number and annular radius are .still observed for tlie ax- 
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isymmetric case. Modulation of multiple dilational mode waves at the aozzie exit allows for 

uniform breakdown of swirling and non-swirling annular films indicated by the generation 

of uniformly sized liquid volumes which are uniformly spaced and connected by thinner liq- 

uid layers. Film topology and break-up of three-dimensionally modulated conical films are 

_discussed. Comparison with the corresponding swirling annular film shows that for sinuous 

film modulation, film divergence causes the separation of initially formed larger fluid blobs 

into a pair of smaller fluid volumes connected by an even thinner liquid layer. 

Within the considered large Weber number and low forcing frequency range, wave an- 

gle measurements from the nonlinear numerical simulations agree very well with predictions 

d9/dz = —k/n obtained from linear theory for both sinuous and dilational waves on swirling 

annular films. On clockwise swirling conical films, spiraling dilational and sinuous waves 

moving in the clock-wise direction increase in slope as the film thins out in the downstream 

direction. The slope of counter-clockwise propagating waves decreases with downstream dis- 

tance. The described changes in slope can be attributed to a decrease in swirl velocity with 

increase in annular film radius downstream that results from the conservation-of-angular- 

momentum principle. Based on the location of the initial film rupture points and the thick- 

ness distribution at the time of film rupture. Figs. 25 through 29 illustrate projected break-up 

patterns characteristic for the cases with pure standing or travelling dilational or sinuous 

mode waves modulated at the nozzle. For mixed standing/travelling and sinuous/dilational 

wave modulation, the resulting break-up pattern are modified or mixed versions of the pat- 

terns illustrated in Figs. 25 - 29. Here, filled circles indicate locations of local maxima 

in the film thickness, solid lines are perpendicular to the directions along which the various 

modulated waves (two in the standing-wave cases, one in the travelling-wave cases) are prop- 
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agating. Dashed lines represent predictions for the free film edges generated after the initial 

rupture of the film. The illuscrated break-up pattern (dashed lines) are derived from the 

assumption that after the initial local rupture of the film , the free liquid edge(s) propagates 

mainly along the direction where the film thickness is the smallest. This assumption is based 

on the observation that the velocity of a free liquid-film edge is given by u^ = J2a/{pt), 

where <T, p and t denote surface tension coefficient, density and thickness of the uniform film 

[29]. For the investigated cases with travelling dilational or sinuous mode circumferential 

waves (wavenumber n), superposition with the imposed axial wave (wavenumber k) results 

in an oblique wave spiraling clock-wise downstream on the annular or conical film. Here, ini- 

tial film breakup occurs simultaneously at various z = constant points. The perforations are 

expected to expand along the line of minimum film thickness (see dashed lines in Fig. 25 for 

the annular case) which results in the formation of liquid filaments spiraling downstream in 

the counter-clockwise direction ("filament beak-up"). On swirling annular films with super- 

imposed dilational standing-wave modulations in the circumferential direction, film rupture 

first occurs after the formation of larger fluid blobs and upstream just behind these larger 

fluid masses. Again, initial film rupture will take place simultaneously at various z =constant 

positions. Subsequent expansion of the film perforations can be expected to generate a more 

or less circular pattern within each cell formed by neighboring fluid blobs. This type of fiilm 

rupture can be characterized as "cellular break-up" and is illustrated in Fig. 26. The same 

break-up pattern can also be observed for non-swirling (pressure-stabilized) annular films 

and for swirling conical films with similar forcing conditions (see Fig. 27). However, due 

to film divergence the "cells" will stretch in the conical case and film thickness within the 

cells will be reduced. Therefore, expansion of the film perforation is expected to occur sig- 
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nificantly faster than in the corresponding annular case. Note, however, that initial rupture 

of the fihn in the conical case is delayed. Fig. 28 illustrates the break-up pactem expected 

for the considered swirling annular cases with a standing sinuous circumferential wave im- 

posed at the nozzle exit. As for the dilational case discussed earlier, initial film perforation 

_ takes place just behind the larger fluid blobs. However, in this case the perforations are ex- 

pected to propagate (more or less) along z = constant lines in the circumferential direction 

(see Fig. 28), ultimately resulting in the detachment of fluid rings with pronounced thick- 

ness fluctuations in the circumferential direction ("ring break-up"). The similar standing 

wave sinuous mode modulation imposed onto the conical film geometry yields the "filament 

break-up" pattern shown in Fig. 29. For the investigated cases, the filaments are spiraling 

clock-wise in the downstream direction. In contrast to the single wave modulation of Fig. 25, 

breakup of the filaments in Fig. 29 will be greatly influenced by the existing non-uniform 

mass distribution along the filaments. 

Acknowledgments 

This research has been supported by the U.S. Army Research Office through Grant/ Contract 

No. DAAH04-96-1-0055 and DAAD19-99-1-0204 with Dr. David Mann as the program 

manager. 

References 

[1] A.H. Lefebvre, Atomization and Sprays, Hemisphere, New York, NY, 1989. 

33 



[2] R.P. Eraser, Liquid Fuel Atomization, Sixth International Symposium on Combustion, Yale 

University, New Haven, pp. 687-701, 1956. 

[3] C. Mehring, and W.A. Sirignano, Nonlinear Capillary Waves on Swirling, Axisymmetric Free 

Liquid films, Int. J. Multiphase Flow, vol. 27, pp. 1707-1734, 2001. 

"[4] M.V. Panchagnula, P.E. Sojka, and P. J. Santangelo, On the Three-Dimensional Lostabiiity of a 

Swirling, Annular, Inviscid Liquid Sheet subject to Unequal Gas Velocities, Phys. Fluids, vol. 8, 

no. 12, pp. 3300-3312, 1996. 

[5] E.A. Ibrahim, and E.T. Akpan, Three-Dimensional Instability of Viscous Liquid Sheets, Atom- 

ization and Sprays, vol. 6, pp. 649-665, 1996. 

[6] J. Ponstein, Instability of Rotating Cylindrical Jets, Appl. Sci. Res. A, vol. 8, pp. 425-456, 

1959. 

[7] C. Mehring, and W.A. Sirignano, Nonlinear Capillary Wave Distortion and Disintegration of 

Thin Planar Liquid Sheets, J. Fluid Mech., vol. 388, pp. 69-113, 1999. 

[8] I. Kim, and W.A. Sirignano, Three-Dimensional Wave Distortion and Disintegration of Thin 

Planar Liquid Sheets, J. Fluid Mech., vol. 410, pp. 147-183, 2000. 

[9] A. Lozano, A. Garcia-Olivaxes, and C. Dopazo, The Instability Growth Leading to a Liquid 

Sheet Breakup, Phys. Fluids, vol. 10, no. 9, pp. 2188-2197, 1998. 

[10] R.H. Range!, and W.A. Sirignano, Nonlinear Growth of Kelvin-Helmholtz Instability: Effect 

of Snrfarp Tpnsinn and Dpnsity Ratin. Phys   Fluids  vn]. ']}. no   7  pp   1''4-.  '.''•i.". I9SS 

[11] R.H. Rangei, and W.A. Sirignano, The Linear and .Nonlinear Shear Instabilicy of a Fluid Sheet, 

Phys. Fluids, vol. 3. no. 10. pp. 2392-2400, 1991. 

34 



[12] C.P. Lee, and T.G. Wang, A Theoretical Model for the Annular Jet Instability, Phys. Fluids 

, vol. 29, no. 7, pp. 2076-2085, 1986. 

[13] C.P. Lee, and T.G. Wang, The Theoretical Model for the Annular Jet Instability - Revisited, 

Phys. Fluids A, vol. 1, no. 6, pp. 967-974, 1989. 

"[14] J.I. Ramos, Annular Liquid Jets: Formulation and Steady-State Analysis, Z. Angew. Math. 

Mech., voL 72, no. 11, pp. 565-589, 1992. 

[15] M.V. Panchagnula, P.E. Sojka, and A.K. Bajaj, The Non-Linear Breakup of Annular Liquid 

Sheets, Proc. 11th Ann. Conf. Liquid Atom. Spray Sys., pp. 170-174, ILASS North and South 

America, 1998. 

[16] C. Mehring, and W.A. Sirignano, Axisymmetric CapUlaxy Waves on Thin Annular Liquid 

Sheets. Part I: Temporal Stability, Phys. Fluids , vol. 12, no. 6, pp. 1417-1439, 2000. 

[17] C. Mehring, and W.A. Sirignano, Axisymmetric Capillary Waves on Thin Annular Liquid 

Sheets. Part II: Spatial Development, Phys. Fluids , vol. 12, no. 6, pp. 1440-1460, 2000. 

[18] W.A. Sirignano, and C. Mehring, Review of Theory of Distortion and Disintegration of Liquid 

Streams, Progr. Eng. Comb. Sci., vol.26, pp. 609-655, 2000. 

[19] W.A. Sirignano, and C. Mehring, Disintegration and Distortion of Liquid Streams, AIAA 

Progress Series, Liquid Rocket Thrust Chambers: Aspects of Modeling, Analysis, and Design, 

Chap. 6, 2002. 

[2nl C. ^fph^in2;. and W A. Sirignano. DisintPizjarinn of Planar Liquid Film Imparted bv T^vo- 

Dimensional Gas Jets, submitted for publication in Phys. Fluids. 

35 



[21] C. Mehring, and W.A. Sirignano, Three-Dimensional Capillary Stability of Modulated Swirling 

Liquid Films, Proc. 14th Ann. Conf. Liquid Atom. Spray Sys., available on CD rom, ILASS 

North and South America, 2001. 

[22] J.H. Ferziger, Numerical Methods for Engineering Applications, Wiley, New York, NY, 1981. 

■[23] M.J. Lighthill, Group Velocity, J. Inst. Math. Appl., vol. 1, pp. 1-27, 1965. 

[24] W.A. Sirignano, and C. Mehring, Comments on Energy Conservation in Liquid-Stream Disin- 

tegration, Proc. 8th Int. Conf. on Liquid Atom. Sys., available on CD rom, 2000. 

[25] R.P. Praser, P. Eisenklam, N. Dombrowski, and D. Hasson, Drop Formation from Rapidly 

Moving Sheets, AIChE J., vol. 8, no. 5, pp. 672-680, 1962. 

[26] N. Dombrowski, and P.C. Hopper, The Effect of Ambient Density on Drop Formation in 

Sprays, Chem. Eng. Sci., vol. 17, pp. 291-305, 1962. 

[27] J.H. Hilbing, and S.D. Heister, Droplet Size Control in Liquid Jet Breakup, Phys. Fluids, 

vol. 8, pp. 1574-1581, 1995. 

[28] N. Dombrowski, and G. Munday, Spray Drying, in Biochemical and Biological Engineering 

Science, Chap. 16, Academic Press, London, 1968. 

[29] G.L Taylor, The Dynamics of Thin Sheets of Fluid, III. Disintegration of Fluid Sheets, Proc. 

Royal Soc. London A, vol. 253, pp. 296-312, 1959. 

36 



Table 1: Nonzero nonnaJized 
wave with wavenumber kz is 

case 
n = 

coefficients within Eqs. 21 if only the unstable dilational mode 
modulated at the nozzle exit. 

We = 1000 
0 

u = 0.06 u = 0.26 
 n = 3  
0/ = 0.06        w = 0.26 

We = 50,w = 0.26 
n=0 n=3 

Re[A:3] 0.259998 0.247686 0.259957 0.205644 
hn[h] -0.00336706 -0.00241779 -0.0150983 -0.0122502 

Re[Ar,,2m 4.07431 1.07193 -2.35187 1.31047 1.06706 1.85022 
ImK.2//iO] 0.158797 0.0202575 1.91089 0.102595 0.0903446 0.819221 
Re[A„-,2/ft°] -0.00383658 -0.000203372 -0.0102061 0.00577779 -0.00406128 -0.000287701 
Im.4„.,2//i°' 0.151768 0.0143359 0.00764552 0.0169967 0.0640431 0.107195 
Re[A„-;j//iO] -0.0814861 -0.00479382 -0.117893 -0.00604028 -0.0213412 -0.0679461 
M^v,' 2/hP -0.003167593 -0.0000905945 -0.13906 0.0121581 -0.00180689 0.0833378 
M-^'fl/h°] 0.0262353 0.0036093 -0.0459605 0.00305534 0.0161147 0.0180419 
lm{Aw'a/h°] -0.00143516 0.0000660645 0.00966504 0.00169273 0.00131817 0.0204783 

Table 2: Dilational travelling wave modulation on swirling annular films generated via har- 
monic oscillations of axial film velocity u* [R = 10, Tp = 15, We = 1000, /j = /s = sin, 
/2 = cos, j = 1, u5 = 0.025, 77 = i;' = u* = 1/;* = 0]. 

case n Ttr Uzd k h,m h^m) 
0 I 27r 0 120 100 
1 1 27r 0.1 100 80.1 (0.2) 
2 3 27r 0.1 117.9 98 
3 3 27r/3 0.1 122.1 102 
4 3 207r/3 0.1 117.6 97.5 
5 3 27r 0.1 10 114.6 94.8 
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Table 3: Dilational travelling or standing wave modulation on swirling annular films gen- 
erated via harmonic oscillations of axial film velocity u* [R = 10, Tp = 15, We = 1000, 
/i = sin, /a = 1, /2 = cos, n = 3, Ttr = 27r, U'Q = 0.025, T] = V' =u* =w* = 0]. 

case ^^3^ j k tb,m /6 
0 0.1 1 1 118.1 97.8 
1 1.0 1 1 105.7 87.1 
2 0.1 0 1 119.4 99.5 
3 0.5 0 10 116.9 97.8 

Table 4: Sinuous travelling wave modulation on swirling annular films generated via harmonic 
oscillations of transverse film velocity v* [R = 10, Tp = 25, We = 1000, /i = /g = cos, 
/2 = cos, Ttr = 27r, -Uj = 0.1, T] = U* = W* = 0]. 

case n ^^3. k tb,m k,m 
0 3 0.1 1 142.6 113.7 
1 3 0.5 1 131.7 102.6 
2 0 0.1 1 145.1 116.2 
3 3 0.5 10 181.7 153 

Table 5: Sinuous standing and travelling wave modulation on swirling annular films generated 
via harmonic oscillations of transverse film velocity v* [R = 10, Tp = 25, We = 1000, /i = cos, 
fz = 1, /2 = cos, n = 3, Ttr = 27r, u* = 0.1, T] = u' = w* == 0]. 

0336 v;^ j k tb,m k,m 

0 n.5 1 1 1392 85.2 

1 0.5 0 1 iUT.l 78.9 

2 0.5 0 10 145.6 118.1 
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Table 6: Sinuous or mixed sinuous/dilational standing wave modulation on non-swirling 
annular films generated via harmonic oscillations of transverse film velocity v* or both film 
thickness 77 and v*. [R = 10, Tp = 10, We = 1000, k = 1, ^ = 1, j = Q,n = 5,u'= w'= 0]. 

case /i /2 ^C), v*{n ib,m k,(m) 
0 sin cos 0.1" 75 39.8 (0.4) 
1 sin 

0 
1 
cos 

0.5" 
0.2' 

65 50.3 (0.15) 

2 sin 
sin 

sm 
cos 

0.5" 
0.5' 

100 48.2 (0.23) 

3 sm 
sin 

sin 
cos 

0.4" 
0.4' 

75 46.8 (0.05) 

Table 7: Sinuous or dilational travelling or standing wave modulation on swirling films 
generated via harmonic oscillations of either u*, v* or w*. [R = 10, Tp = Tj: = 10, We = 1000, 
/2 = cos, /i = 0,77 = 0]. 

case /3 J " ('), V* ("), ^'0 n k ^6,771 ^b,(m) 
0 sm 0 0.25" 5 1 37.5 23.1 (0.14) 
1 sm 0 0.25" 5 10 36.4 23.4 
2 sin 0 0.15" 5 10 56.3 33.1 
3 sm 0 o.r 5 10 78 57.5 (0.1) 
4 1 1 2 2 10 70 52.4 (0.015) 
5 1 1 0.05' 2 10 77.5 55 (0.019) 
6 sm 0 0.05' 2 10 75 52.5 
7 sin 0 0.5 4 10 27.6 18.5 
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Table 8: Modulation of single unstable dilational mode wave onl Dilational travelling wave 
modulation on swirling annular films generated via harmonic oscillations of axial film velocity 
W [R = 10, Tp = 15, We = 1000, h = h= sin, h = cos, j = 1, ix^ = 0.025, T) = V*=U* = 
w* = 0]. 

case n Ttr "3(i k       <6,m ^6,(m) 
0 1 2TC 0 1      120 100 
1 1 27r 0.1 1      100 80.1 (0.2) 
2 3 2w 0.1 1      117.9 98 
3 3 27r/3 0.1 1      122.1 102 
4 3 207r/3 0.1 1      117.6 97.5 
5 3 27r 0.1 10    114.6 94.8 
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Figtire Captions 

Figure 1: Schematic depictions of the investigated semi-infinite annular and conical swirling sheet con- 

figurations: (a) dilational modulation, (b) sinuous modulation. 

Figure 2: Solutions 1-3 to Eq. (20) obtained via Mathematical^. 

Figure 3: Solutions 4 and 5 to Eq. (20) obtained via Mathematical^. 

Figure 4: Solutions 6 and 7 to Eq. (20) obtained via Mathematical*'. 

Figure 5: Solutions to Eq. (20) for wavenumbers ki{i = 1,... ,7) [We = 5,iJ = 10,n = 3]. For LJ < 0.7, 

ki-4 are predominantly dilational mode waves and ^5-7 are predominantly sinuous mode 

waves. 

Figure 6: Growth rates for unstable dilational mode wave h [We = 1000, i? = 10]: o : n = 0, D : n = 1, 

O : n = 2, A : n = 3, V : 71 = 4. 

Figure 7: Growth rates for unstable dilational mode wave ^3 [We -50,R = 10]: o : n = 0, D : n = 1, 

0:n = 2, A:n = 3, V:7i = 4. 

Figure 8: Growth rates for unstable dilational mode wave k^ [We = 5,R = 10]: o : n = 0, □ : n = 1, 

O : n = 2, A : n = 3, V : 71 = 4. 

Figure 9: Wave angle d9/dz* = k/n for unstable dilational mode wave kz [We = 50, i? = 10]: D : n = 1, 

O : n = 2, A : 71 = 3, V : 71 = 4. 

Figure 10: Instantaneous film thickness distribution for swirling annular axisymmetric liquid fihn [n = 0) 

with modulation of the film thickness at the nozzle exit in order to generate the xmstable 

dilational mode wave predicted by linear theory [R = 10, a; = 2-KTp = 0.26, We = 1000, 

AAr- = 0.35; II = 390, ij = 422.85]. 
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Figure 11: Instantaneous three-dimensional film thickness distribution for swirling annular liquid filrn 

(n = 3) with modulation of the fihn thickness at the nozzle exit in order to generate the 

imstable dilational mode wave predicted by linear theory [R = 10, a; = 2TvTp = 0.26, We = 

1000, AAr- = 0.35; i; = 245, t; = 275.55]. 

Figure 12: Instantaneous film three-dimensional thickness distribution for swirling annular liquid film 

(n = 3) with modulation of the film thickness at the nozzle exit in order to generate the 

mistable dilational mode wave predicted by linear theory [R = 10, w = 27rTp = 0.26, We = 50, 

AAr- = 0.15]. 

Figure 13: Instantaneous film interface locations for the swirling annular liqmd film of Fig. 12. Film 

break-up length and time are ZJ = 95 and ij = 115.2, respectively. 

Figure 14: Instantaneous film thickness distribution for swirling annular axisymmetric Uquid film (n = 0) 

with modulation of the film thickness at the nozzle exit in order to generate the unstable 

dilational mode wave predicted by linear theory [R = 10, w = 2xTp = 0.06, We = 50, 

AAr- = 0.15; tl > 225]. 

Figtu-e 15: Instantajieous three-dimensional film thickness distribution for swirling annular liquid Shu 

(n = 3) with modulation of the film thickness at the nozzle exit in order to generate the 

unstable dilational mode wave predicted by linear theory [R = 10, w = 2irTp = 0.06, We = 50, 

AAr- = 0.15; i; = 117.5, «J = 127.2]. 

Figure 16: Slices through the distorting hquid film of Fig. 15 at various downstream locations. Nozzle 

exit loratpd at r* = 0. 

Figure 17: Instantaneous film-interface locations for non-swirling (pressure-stabilized) annular liquid 

film dilationally modulated at the nozzle exit z'  = 0 according to Eqns.  (30) and (31) 
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[R = 10, We = 1000, Tp = Te = 10, n = 5, A = B = 0.04]. 

Figiire 18: Instantaneous film-mterface locations for non-swirling (pressiire-stabilized) annular liquid 

film sinusoidally modulated at the nozzle exit z* = 0 according to Eq. (32) [R = 10, We = 

1000, Tp = Te = 10, n = 5, C = 0.1]. 

Figuire 19: Instantaneous non-dimensional film thickness distribution for the non-swirling (pressure- 

stabilized) annular liquid film of Fig. 18, subject to three-dimensional sinuous forcing at 

the nozzle exit z* = 0 according to Eq. (32) [R = 10, We = 1000, Tp = Tg = 10, n = 5, 

C = 0.1]. 

Figure 20: Instantaneous non-dimensional film thickness distribution for swirling annular liquid film 

subject to three-dimensional sinuous forcing at the nozzle exit z* =0 according to Eq. (32) 

[R = 10, We = 1000, Tp = Te = 10, n = 5, C = 0.1]. 

Figure 21: Instantaneous outer interface topology for swirling conical liquid film with three-dimensional 

sinuous modulation enforced at the nozzle exit 2* = 0 according to Eq. (32) [R = 10, 

We = 1000, Tp = Te = 10, n = 5, C = 0.1, swirl number k = 10]. 

Figure 22: Instantaneous non-dimensional film thickness distribution for swirling conical liquid film of 

Fig. 21. 

Figure 23: Disturbed and undisturbed outer film interface for the swirling conical liquid film of Fig. 21. 

Figure 24: Instantaneous film-interface locations for swirling conical liquid film with three-dimensional 

sinuous modulation enforced at the nozzle exit z' = 0 accordiag to Eq. (32) [R = 10, 

We = 1000, Tp = Te = 10, n = 5, C = 0.25, swirl number A: = 10]. 

Figure 25: Sketch of general film break-up pattern for swirling annular liquid film in (z, 9) plane at 

instant in time with one dilational or sinuous travelling wave modulated at the nozzle. Solid 
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lines: mcLximum thickness contour lines (local line thickness = measure of maximum local 

film thickness). Dashed lines: film perforation pattern. 

Figure 26: Sketch of general fihn break-up pattern for swirling annular liquid film in (z, 6) plane at 

instant in time with standing dilational circumferential wave modulated at the nozzle. Solid 

line: maximum thickness contour line for single oblique wave. Dashed line: instantaneous 

fi:ee film edge. Shaded area: void. Solid circle: local fikn-thickness maximum. 

Figure 27: Sketch of general film break-up pattern for swirling conical liquid film in {z, 9) plane at mstant 

in time with standing dilational circumferential wave modulated at the nozzle. Solid line: 

maximum thickness contomr line for single oblique wave. Dashed line: instantaneous free film 

edge. Shaded area: void. Solid circle: local film-thickness maximum. 

Figure 28: Sketch of general film break-up pattern for swirling annular liquid film in {z, 9) plane at 

instant in time with standing sinuous circumferential wave modulated at the nozzle. Solid 

line: maximimi thickness contour line for single oblique wave. Dashed line: instantaneous 

free film edge. Solid circle: local film-thickness maximum. 

Figure 29: Sketch of general film break-up pattern for swirling conical liquid film in {z, 9) plane at 

instant in time with standing sinuous circimiferential wave modulated at the nozzle. Solid 

line: maximum thickness contour line for single oblique wave. Dashed line: instantaneous 

firee film edge. Solid circle: local film-thickness maximum. 
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ADDENDUM III 

PF#? 

Dynamic Stretching of A Planar Liquid Bridge 

C. Mehring"' and W. A. Sirignano") 

Department of Mechanical and Aerospace Engineering, University of California, Irvine 

(February 18, 2003) 

Abstract 

A thin incompressible viscous planar free liquid film in a void and under zero 

gravity is analyzed by means of a reduced-dimension (lubrication) approach. 

Linear analysis focuses on films with harmonic modulations in the axial film 

velocity enforced at the ends of the planar bridge. Efiect of changes in the 

problem parameters on the overall distortion characteristics of the film are 

discussed. NonUnear film distortion and break-up is investigated for the case 

of temporally increasing velocity at the end of the film resulting in continuous 

film stretching eventually leading to film rupture. Implementation of the 

employed numerical model is vahdated for the Hnear limit by comparison 

with the analytical linear solutions and for harmonically modulated film-end 

velocities. 

Within the nonlinear analysis of the continuously stretched film bridge, 

several distinct film topologies are identified depending on liquid Weber num- 

ber and Reynolds number, i.e., the magnitude of the stretching rate (end 

velocity) compared to signal propagation rates through the hquid via capil- 

lary waves and viscous action. That is, the Weber number is the square of 

the ratio of stretching rate to capillary wave velocity while Reynolds number 

is the ratio of stretching rate to the characteristic viscous velocity. Here, film 



topology is typically characterized by three distinct regions, i.e. a film wedge 

forming at the pulling end(s), the film center region and a transition region. 

The size and shape of these regions greatly depends on the particular case 

under investigation. 

Film distortion characteristics observed for continuously compressed pla- 

nar films conform with observations made by other authors for the similar 

case of contracting free liquid films. 

Typeset using REVTEX 



I. INTRODUCTION 

Written reports on the analysis of thin films originate as far back as Leonardo da Vinci^ 

who described the formation of a liquid film when pulling a reed out of soapy water. Today, 

liquid films are found in a wide variety of engineering applications including novel concepts 

such as liquid film space radiators,^-^ liquid lithium films for inertial fusion reactors/ liquid 

bells employed as toxic waste incinerators^ and modulated injected fuel films for actively 

controlled fuel spray formation in the combustion chambers of advanced gas turbine engines.^ 

Previous work by the authors has focused on the initial distortion and disintegration 

of continuously discharging films (or periodically disturbed infinite films) with relevance to 

the described actively controlled fuel atomization process/""^" In an effort to understand the 

dynamics of the larger fluid ligaments initially shed from the discharging continuous film, a 

finite length continuously stretched or compressed two-dimensional planar liquid film in a 

void (also referred to as liquid bridge) has been analyzed. The avoidance of considering a 

finite-length film with free ends allows the use of lubrication equations (previously derived by 

the authors) without additional modelling needs at the film ends. Those equations become 

invalid for a freely contracting or stretching film whose ends are characterized by a radius 

of curvature of the film interface that becomes as small as the film thickness. 

Thin planar films in a surrounding void and subject to two-dimensional symmetric (or 

antisymmetric) disturbances are well known to be linearly stable.^^ However, nonlinear the- 

ory has shown that the superposition of multiple symmetric disturbances on a periodically 

disturbed infinite film can produce nonlinear film instability.^^'^^ Furthermore, for very thin 

films, long-range molecular forces (acting between the two film interfaces) can also result in 

film instability, even by linear theory. There have been various linear and nonlinear analyses 

on this subject. For a detailed review the reader is referred to Ref. 11 and 14. 

Previous work focused on periodically disturbed films with zero or constant "base flow" 

velocity. Previous analyses of finite length hquid bridges focused on cylindrical fluid columns 

or annular Uquid/soap films rather than two-dimensional films.^^'^^ The proposed analysis a 



dynamically stretched or compressed planar liquid bridge has not, to the knowledge of the 

authors, been reported in the literature. 

A brief nonlinear analysis of a contracting two-dimensional free liquid film was presented 

in Ref. 17. The authors described topological changes in the interface distortion with changes 

in Reynolds number and Weber number. The present work focuses on the interface dynamics 

of the stretching film for various Weber numbers, Reynolds numbers, film-thickness-to-Iength 

ratios and the acceleration period (time over which the film ends are accelerated from zero 

velocity to the maximum pull velocity). 

In this context, it is worthwhile to note that in the spray formation application described 

earlier, stretching of the initially formed liquid ligaments proceeds the contraction process, 

the latter taking place once a sufficiently stretched ligament has ruptured. 

II. GOVERNING EQUATIONS AND PROBLEM SET-UP 

The governing equations within the liquid phase of an incompressible viscous planar free 

liquid film at zero gravity are given by: 

du     dw     ^ .. 

du       du       du        I5(p-F$)        (d^u     d'^u\ ,„, 

dw       dw        dw ld(p + ^)        fd^w     d^w\ ,„, 

where x is the direction along the film, z is the transverse direction, u and w are the 

respective velocity components, p is pressure, u is kinematic viscosity, and $ denotes the 

potential energy function per unit volume which accounts for the presence of long-range 

molecular forces and which depends on the thickness of the free film.'^'^^ When the film 

thickness is large, the effect of the Van der Waals (long-range molecular) forces is well 

represented through the Navier-Stokes equations with the use of surface tension in the 



interface conditions and the $-term is negligible. However, $ becomes important and can 

even dominate film dynamics as the film thickness drops below 100-1000 Angstroms.^'' The 

present analysis will focus on film dynamics at fairly large film thicknesses so that here, Van 

der Waals forces are included in the governing equations only to illustrate their potential 

relevance as film thinning progresses, i.e. before film rupture occurs. The majority of results 

presented here neglect the effects through the $-term of the described intermolecular forces; 

rather, their integrated effect appears in the continuum representation. 

Boundary conditions at the film interfaces z = /i(x, t)± are given by the following kine- 

matic and dynamic conditions. 

Kinematic condition: 

dh± dh± 
w — -r-—h u± 

dt dx (4) 

Dynamic condition: 

T± • n-t = —/c±crn-t (5) 

where + and — refer to the upper and lower interface, respectively. In Eq. (5), T denotes the 

stress tensor, K represents the interface curvature and n is the outward pointing unit normal 

vector at the interface. Eq. (5) has a tangential and a normal component. The tangential 

component, i.e. the total shear stress on the interface, is identical to zero since externally 

imposed surface forces, as well as surface gradients of surface tension a have been neglected 

here. 

The stress tensor is given by 

T = 

■P   +   2/.g 

/^(^ + 'du 

/^(l^ + .dz 

dx) 

dw\ 
dx) 

- P + 2 /if 

(6) 

and 



n± = 
(T5/i±/ax,±l) 

1/1 + [dh^idxf 

K^ = —V • n = ±i 
d^hjdx^ 

(7) 

(8) •[l + (5/l±/5x)2]3/2 

Accordingly, the components of the dynamic condition Eq. (5) in the axial and transverse 

directions can be written as: 
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1 
dx 

duj.     dw± 
+ 

dz       dx 
-4 

dh± duj 

dx   dx 
0 

ei± 
e2±- 

dw4,     9/1-1 + = aK± 

(9) 

(10) 
dz       dx   \ dz   '   dx 

with ei± = [1 + {dh±ldxY] and e2± = [1 - {dh±/dx)'^]. Since the film thickness is small 

compared to the length of the film, we employ a polynomial expansion of the dependent 

variables 9 = u, w,p, or $ in terms of z, i.e. 

e = eo{x, t) + 5i(x, t)z + Oiix, t) z^ + (11) 

analogous to the one presented in Ref. [5] for inviscid films. 

Considering zero- and first-order terms in the series expansion for u and w within the 

kinematic condition (4) yields, 

dh+ dh+ 6 dh+ 

If- = 
dh- 

di 
+ UQ 

dh. 6dh- 

dx ^^IT; 2 dx 

(12) 

and 

W+ = Wo + Wi- 

w- = wo-Wl- 

wheTe 5 denotes the film thickness S{x, t) = h+ — /i_ and hj 

summation WA. + W- and subtraction w+ - w- then provides 

(13) 

±5/2, respectively.   The 



5d5 

The leading-order approximation to the continuity equation Eq. (1) is given by 

^ + «<.=0 (15) 

which after consideration of Eqs. (14 yields 

The lowest-order approximation to the axial (x—) momentum equation is obtained anal- 

ogously (i.e. by replacing u, v and p by the appropriate series expansions) and is given by 

where expressions for po, $o and W2 remain to be determined (see below). 

Employing a similar procedure, one obtains the lowest-order approximation to the trans- 

verse (z-) momenthm equation, i.e. 

Note that, the forces driving the transverse motion of the fluid are of first order (i.e. pi and 

$i). Therefore, the transverse fluid motion in the considered dilational case, the transverse 

fluid motion can be neglected in this analysis. Nevertheless, substituting w^ from Eqs. (14) 

into Eq. (18), one obtains an equation relating the first-order expansion coefficients u\,p\ 

and $1- 

Eqs. (16) and (17) represent the leading-order equations considered within the present 

analysis. In order to close the lowest-order system of equations and proceed with its (nu- 

merical) solution, po, "^o and ui remain to be expressed in terms of known quantities or 

quantities for which governing equations are given, i.e. 6 and UQ. 



An approximation for U2 is obtained by employing the second-degree polynomial expan- 

sion of u in the evaluation of B^u/dz^. This yields d'^u/dz^ = 2u2 or after integration from 

the lower to the upper interface boundaries, 

1 
U2 = 

25 

' du ' du 
.d~z 

(19) 

The right-hand-side of Eq. (19) can be expressed by means of the shear-stress boundary 

condition Eq. (9) solved for {du/dz)±, i.e. 

[dx. 
+ 4 1- 

'dh± 
, dx 

-1 
dh± du± 

dx   dx 
(20) 

\dzj^ V —/± 

where an expression for {dw/dx)± is obtained by taking the derivative of Eq. (1) in 

x-direction and subsequent integration in z-direction. The result of this procedure yields 

'dw\  _  _ 
.dxj.      \dx 

\   1        r'^+ d'^u d   f^+ du 
)_\=L d^^^'-^d^L Yx^'- 

dh+ du+     dh- du 
+ 

d_ 
dx 

d_ 
dx 

d   /■'•+    ,       dh+ dh 
/     udz —X—11+ + -x—u 

dx Jh- 

di^^'^^-^'d-x 

dx ""^ '   dx 

_dS_du_ d_ 
dx dx     dx 

dx   dx   '   dx   dx 

dS du 
dxdx 

du 
dx dxdx       dx^  ^   ' 

where u = !t "d^/^ = UQ -t- <5V2«2 + h.o.t. Introducing Eq. (21) into Eq. (20) yields the 

integral form of the shear stress boundary condition, 

'du 
.dz 

' du 
.'d'z 

— A^^"°       d5 dup 
dx^       dx dx \2dx 

-1 
,d5 

+ 0{5\6'^) (22) 
dx 

if only the two lowest-order terms in the expansion of u are considered. Therefore, 

U2 = X- 
1 d^uo     2 d5 duo + .^^ + 0{6\5^) 

^dx- 
(23) 

2 9^2      6 dx dx 

The lowest-order approximation for the interface pressures p± is obtained by considering 

only terms up to order one in the series expansion for p, i.e. 

5 
P± =Po±Pi: (24) 

This yields po = {p+ + P-)/2 whereby p+ and p_ are taken from the normal stress 

boundary condition Eq. (10). The result is 



Po = -7: 2 5x2 '^\{f. 
-3/2 

-2/i 
dup 
dx 

.     1 (96' 
^     4 Ux, 

-I' 

(25) 

where again only the two lowest-order terms in the approximation to u have been considered 

in Eq. (10). 

Note that, when evaluating 112 and po in EQ- (17), the employed lower-order approxima- 

tion to the normal stress and shear stress boundary conditions Eqs. (9) and (10) have not 

employed any simplifications with respect to the interface geometry; in particular, the full 

curvature term is retained in the evaluation of the surface tension within Eq. (10). 

Using Eqs. (22) and Eq. (25), Eqs. (16) and (17) can be rewritten to obtain the leading- 

order equations for symmetric film distortion governing the film thickness 5 = (/i+ — /i_) 

and the axial velocity UQ 

d6     d{u5) 
dt       dx 

= 0 (26) 

du       du 
dt        dx 

9^'^ r,    ^, r     ,N   1     ,   I d5 du z/^r-r [A + 2if-l)g] + 4u-——g 

du d5 d'^5   9     a d^5 , ,/o 
+2u 

dx dx dx^ 

ZadS fdH' 

2pdx^ 

-5/2 
8pdx \dx'^ n" + ^ ZAdS 

pS'^dx 

where the subscript '0' in UQ has been omitted and 

r      n      f'^96' 
, 9 = 1-fi^^ 

i2ax, 

-I -1 

(27) 

Furthermore, the last term in Eq. (27) represents —{d^o/dx)/p where $0 has been expressed 

by 

^0 = A5 -3 (28) 

according to Ref. 18, with A = ^°/(67r) where A° is the Hamaker constant A° = 10 ^^ erg, 

but without an additive constant.^'^'^^ If the denominators in Eqs. (7 , 8) are approximated 



by 1 (i.e. considering {dh±/dx)'^ «C 1), then Eqs. (26 , 27) reduce to the equations presented 

by Erneux and Davis in Ref. 21 for long wavelength disturbances on thin films, i.e. 

dt       dx 

du      du_    d^    AH^?}!:    ^^    M^ f29) 
dt       dx dx"^       5 dx dx     2p dx^     p5^ dx 

Here we have a parameter 4 in the viscous term to which viscous forces inside the liquid 

contribute one, shear stress at the interface contributes one, and normal stress contributes 

two. The second term on the right-hand-side is a viscosity correction term which results 

from the shear stress at the interface. 

In the present analysis, no approximations are made in the formulation of the interface 

conditions. In particular, the full curvature term is retained in Eq. (10). This "ad-hoc" 

assumption in an otherwise lower-order one-dimensional model follows the analyses and 

observations by Ruckenstein and Jain,^^ Eggers^^ and Eggers and Dupont,^^ who studied the 

dynamics of drop formation from cylindrical liquid jets or columns. Similar considerations 

were made by Mehring and Sirignano'''^ who analyzed capillary waves on thin planar and 

annular free liquid films. 

Eqs. (26) and (27) have been used to study the dynamic stretching of a thin liquid film 

subject to equal but opposite pulling velocities at both ends. Due to the symmetry, it 

is suflicient to analyze only one half of the film. The configuration considered within the 

present work is shown in Fig. 1, with the plane of symmetry located at x = 0. The film is 

assumed to be initially undisturbed with 5(x, 0) = 5i and u(x, 0) = 0 for 0 < x < Zj where 

(2/i) is the initial total length of the film. Boundary conditions in the plane of symmetry 

at X = 0 for f > 0 are given by (dS/dx) = 0 and u = 0. The pulling velocity Up{t) at 

X = l{t) = /o Up{t') dt' + li was assumed to increase smoothly from 0 to a maximum steady 

value U according to 

u[l{t),t] = Up{t) = U/2[l-cos{27rt/Tp)]       for       0 < i < Tp/2   and 

Up{t) = U       for       t>Tp/2 (30) 
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The film thickness 5 at the pulling end was assumed to be fixed, i.e. (J[/(t),i] = S^. 

With the prescribed initial and boundary conditions, Eqs. (26) and (27) have been 

solved numerically after nondimensionalization and after introducing the following coor- 

dinate transformation: 

where 2l{t) denotes the instantaneous total film length. 

With this change of variables, the problem becomes a fixed-boundary-value problem, 

which greatly simplifies its numerical analysis. Note that, with increasing film length l{t), 

the fixed spatial resolution in rj used within the subsequent numerical analysis, corresponds 

to a continuously decreasing resolution in x, i.e. physical space. Therefore, predictions for 

film lengths at breakup and time until breakup have to be considered with some caution. It 

is noted here that, the present work is focused on a description of film dynamics in the course 

of film stretching (or compression) prior to film rupture and not on an exact prediction of 

film length at rupture or time until film rupture. 

For the non-dimensionalization, the following non-dimensional variables have been em- 

ployed, 

<5* = - , u* = - , r = - , r* = —- , C = 7 32 
Oi U k U/Uc k 

where 5i, Z,- and U denote the initial film thickness, initial film length and maximum pull 

velocity, as introduced earlier. The capillary velocity u^ is given by Uc = Ja/{p6i). Intro- 

ducing the prescribed transformation and non-dimensionalization, Eqs. (26) and (27) are 

given by: 

dS* U    — T]U 06'       /—-5* du' 
+ yw^r__:i£i^ + ywe^-   =0 (33) 

dr' I* drj I* drj 

du*       j W -  L ,/wIL  VW 
rju du' 

dr* I' dr] 
(34) 
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2C^^, _.2 5^*5(5* 52(5- 
1.4 ^ 

+ ZA'      85' 

dr] drj drj^      6'H*\/We di] 

e      j.-znd'S sc" 

with 

2l*^VW^ 

r = i + 

.-5/2 

dv^     8l'^y/wl 
y.-0/^ ZZ_ 86*   8H i2X.' 

8T]  \ drf 

C 85 .\2 

,5   = 1- 
21* 8T] 

.\2' n -1 

^2/* dr) 

and Ohnesorge number, Weber number and nondimensional 'modified' Hamaker constant 

A* given by 

Re o o5i 

where the Reynolds number Re is defined zs Re = U 5i/v. 

Linear Analysis 

(35) 

We now consider a linear analysis of the described planar liquid film with its ends har- 

monically modulated 180° out of phase keeping the symmetry . The average mean axial 

velocity of the film is zero in this case and the average half-length is L. Therefore, here the 

capillary velocity u^ = JoJp5i has been employed in order to nondimensionalize Eqs. (26) 

and (27). 

Replacing variables 6*, u* and /* (now nondimensionalized using Uc and 4) by their mean 

and fluctuating values, i.e. 

5' = 1 + 5'   ,    u' = u'   ,    r =L + l' 

linearization of Eqs. (33) and (34) yields 

dr'      L drj 

4   1 d'^u'     ,,,11 85'.    1 1 di'5' du' 
8T'      Re 12 dr]^ Re^Ldr)     2L^drf 

(36) 

(37) 
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with A = A/{pi''^5i) and now 77 = x/L. Note that, in contrast to the nonlinear analysis 

of the continuously stretched or compressed liquid bridge, the Reynolds number within this 

linear analysis is based on the initial (undisturbed) film thickness Si and the capillary velocity 

Uc = Jcr/pSi. A modal analysis of the above equations is conducted by assuming wavelike 

solutions of the form 

5' = a-e't'"^"-'=''^ (38) 

(39) 

(40) 

where uj is the non-dimensional oscillation frequency at a particular location along the film 

and k = 2it6i/X is the wavenumber characterizing the disturbances appearing on the film. 

Introducing the above equations for 6' and u' into the linear equations Eq. (36) and 

Eq. (37) yields the characteristic equation which determines the dependence of the distur- 

bance wavenumbers k on the forcing frequency cj. 

4 
Me    J        Re 

ZA'   2     1  4 
2 2 

0 (41) 

with K = k/L and u = Ja/{pSf) Q, where Q, denotes the dimensional forcing frequency. 

In order to clearly illustrate the effects of viscosity, surface tension and intermolecu- 

lar forces on the stability of the liquid film, Eq. (41) is solved for forcing frequency u in 

dependence of real wavenumber K, i.e. 

^1,2 =  2 S 

viscous 

K^±i 
16 
Re^ 
viscous 

K^ + 12A* K * .,2 2 K'' 

molecular      surface tension 

(42) 

where A' = A'/Re'^ = A/{a5f) as already introduced earlier. In Eq. (42), the first term in 

curly brackets and the first term in square brackets account for viscous eflfects. Note that, 

the combined eS'ect of both terms will always act stabilizing on the distorting film, i.e. result 

in real values for u. The second and third terms on the right-hand-side of Eq. (42) account 

for intermolecular forces and surface tension, respectively. While the former might result in 
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film instability due to the production of a complex w-value with negative imaginary part; 

the latter, by itself, will always produce real w-values indicative of a stable film. While the 

surface tension represents the effect of intermolecular forces for larger thickness, it acts in 

opposite manner to the <l>-term which is intended to represent intermolecular forces in the 

very thin film situation. That is, when the intermolecular forces act primarily on neighboring 

molecules in the same surface layer as happens for thicker films, the eflFect is stabilizing and 

is well represented by the surface tension formulation. However, when the intermolecular 

forces act significantly upon molecules in the other surface layer of a very thin film, the 

effect is destabilizing and is represented through the $-term. 

Eq. (42) show that, for K^ < 6A*, uj will take only positive or negative imaginary values 

wi and UJ2- The latter will result in an exponentially growing solution while the former will 

produce a solution which decays exponentially in time. Note that the unstable growth rate 

UJ2 will be smaller than the decay rate Ui. For 6A* < K? < 6A*/{1 - S/Re^), the square-root 

term in Eq. (42) will be positive but smaller than An^/Re. In this case, Eq. (42) will produce 

solely exponentially decaying solutions. If K^ > 6A'/{1 - S/Re^), the square-root term in 

Eq. (42) will be complex and the resulting frequencies a;i,2 will contain an exponentially 

decaying part (due to viscous damping) and a travelling-wave part. 

If the effect of intermolecular forces is neglected in the analysis, no film instability exists 

and a; has a double root at Re = 2\/2, i.e. u;i,2 = 2iK^/i?e with exponentially decaying 

solutions only. Exponentially decaying solutions are also found for Re < 2\/2, however 

here the decay rates associated with each solution of a; are different. For Reynolds numbers 

above 2\/2 each solution for u is associated with an exponentially decaying solution and a 

travelling-wave-type solution. Consider the linear boundary-value problem of a planar liquid 

film bridge (i.e., a free liquid film bounded at both ends by a solid vertical surface) with 

harmonic forcing of its ends at frequency u. Here, Eq. (41) has to be solved for wavenumbers 

k dependent upon u. The prescribed modulation will result in a film distortion composed 

of four wavenumbers since Eqs. (36) and (37) form a fourth-order system. If intermolecular 

forces are neglected, ki through k^ are given by 
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«i,2 = K^l^ = ±2 -ioj (RC-^ - yi?e-2 - 1/8j 

«3,4 = k3,,/L = ±2  -io; (Re-' + ^Re'^ - l/s) 

Tl/2 

1/2 

(43) 

where the ' + ' or ' - ' sign relates to ki and k2 or fcs and ^4, respectively. Note that k 

{i = 1 through 4) are always complex. No film instability exists if intermolecular forces 

can be neglected. Using the four solutions obtained for wavenumbers ki in (43), the general 

solution to the described linear boundary-value problem is given by: 

J' = ^ai-e'('-^*-*=^'')        ,        u' = i^k-e'^''^'-''^^\ (44) 
i=l i=l 

where, according to Eq. (36), the eight coefficients a,- and 6,- are linearly dependent on each 

other according to four relations 

^ == -^ (45) 
bi      u! L 

The remaining four unknown coefficients are determined by four boundary conditions 

imposed at the ends of the liquid bridge. For the present analysis, these boundary conditions 

have been specified as 

U'{T*, T] = ±L) = ±UO COS (27r/ r*) 

6'{T\r] = ±L)=0 (46) 

The prescribed boundary-value problem has been solved for a variety of Reynolds numbers 

Re, forcing frequencies / = u!/{2ir) and thickness-to-length ratios, i.e. L-values. ■ 

III. RESULTS 

A. Linear Analysis 

We now describe the analytical results obtained for the linear boundary-value problem 

specified in the previous section. Some figures also contain the corresponding numerical 

solutions obtained by using the numerical scheme employed to solve the nonlinear distortion 
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of a continuously stretched or compressed film discussed later. The excellent agreement 

between linear analytical and numerical solutions illustrates the proper implementation of 

the lubrication equations Eqs. (26) and (27), at least in the linear limit. 

Effect of Changes in Reynolds number. 

For large Reynolds numbers Re, viscous damping of the capillary waves generated by the 

modulation at the film ends is very small and the instantaneous envelope in the film thick- 

ness distribution is essentially uniform along the film. See Fig. 2. As the Reynolds number 

decreases, capillary waves are subject to viscous damping and the maximum disturbance 

amplitude in the film thickness is decreased and the amplitude of the instantaneous en- 

velope in 5' along the film decreases towards the film center; see Fig. 3. As the Reynolds 

number is decreased further, the decay rate of the described envelope towards the film center 

increases. At low enough Re-values, no wave phenomena is observed. However, for the case 

shown in Fig. 4, information on the film modulation still reaches the film center resulting in 

a time-varying local extremum in 6'. Variations in 5' are smallest at the film center. At very 

low Reynolds numbers, information propagation is dominated by viscous effects; see Fig. 5. 

We observed that, whereas the overall maximum disturbance amplitude in 6' (at a particular 

time) decreases, its amplitude at the film center is increased. Spatial variations in 6' are 

moderate at very low Reynolds numbers, approaching uniform instantaneous film thickness 

along the film, with exception close to the film ends where S' = 0 has been enforced. For 

the same case, the axial velocity profile along the film is nearly linear as the velocity at the 

film ends reaches its ma:ximum values (positive or negative). 

Effect of Changes in Thickness-to-Length Ratio 1/L: 

Comparison amongst Figs. 3, 4, 5 and Figs. 6, 7, 8 illustrates that, the characteristics of film 

topology and film dynamics (including instantaneous maximum disturbance amplitudes) at 

the film ends do not change with decreasing film thickness-to-length ratio.   However, at 

larger L-values the decay rate of the envelope in 6' along the film towards the film center is 
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increased so that the center region remains essentially undisturbed. For very larger L-values, 

decay rates of the envelope in the film thickness disturbance do not change significantly with 

changes in L. This can be observed by comparing Fig. 7 and 9, for example. 

Effect of Changes in Forcing Frequency f: 

Changes in film distortion characteristics with increases in modulation frequency / (at con- 

stant Re- and L-values), such as those observed in Figs. 4 and 10 or Figs. 5 and 11, resemble 

those observed for the similar case but larger L-value if results are plotted over an axial 

coordinate normalized by the nondimensional film length L. See Figs. 10 and 7 or Figs. 11 

and 8. Note however that maximum thickness disturbances are significantly smaller for the 

case with increased forcing frequency. Also, recall that maximum disturbance amplitudes 

did not notably change with changes in the thickness-to-length ratio (i.e. l/L-value) of the 

film. 

B. Nonlinear Analysis 

The nonlinear analysis has focused on films which are continuously stretched or com- 

pressed at their ends. Numerical solutions of the nondimensional nonlinear evolution equa- 

tions were obtained explicitly by employing central differencing for the spatial derivatives in 

combination with one-sided spatial diflferencing for the evaluation of the highest-order spatial 

derivative at the pulling end. Time step AT* and mesh size A77 were fixed throughout each 

simulation and have been chosen in order to guarantee stability of the numerical solution and 

in order to provide an accurate prediction of film topology and film dynamics in the course of 

film stretching. The latter has been demonstrated by comparison with results using reduced 

time-steps and/or mesh sizes. It is noted here once more that, predictions of film break-up 

length and break-up time for significantly stretched films have to be considered with some 

caution due to the deteriorating spatial resolution resulting from the transformation of the 

stretching-film problem to a fixed boundary-value problem.  Figs. 12 through 17 illustrate 
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results for various combinations of Reynolds number Re and Weber number We at fixed 

thickness-to-length ratio C and constant Tp-value, i.e.   ( = 0.1 and Tp = 1, respectively. 

Figs. 12 and 13 show the variation of film thickness and axial film velocity with time for 

the case with We = 1 and Re = 100. Note that We = 1 implies that the maximum pulling 

velocity U equals the capillary wave velocity Uc = yja/{p6i). Precisely, Uc represents the 

capillary wave speed for sinuous mode waves and not dilational waves as considered here; 

the latter have been shown to be dispersive with wave velocity inversely proportional to 

wavelength. For dilational waves of wavelength greater than 27^5i, the wave speed is less 

than Uc-^ The nondimensional length II = Ib/k at which the film ruptures is 2.42, with 

rupture occuring after nondimensional time r^* = Tb/{li/U) = 1.92. In this analysis, film 

rupture is assumed to take place if the value of the film thickness 5 reaches zero or drops 

below zero value locally. 

From Fig. 12, we observe the formation of a liquid wedge at the pulling end. Also, 

capillary waves initially generated at the pulling end propagate into the film leading to an 

absolute maximum in the film thickness at 77 = x/Z = 0 before and at the time of film break- 

up. For the same case as shown in Fig. 12, Fig. 13 illustrates the formation of a singularity 

in the axial velocity at the point of film rupture, the latter being located close to the pulling 

end dividing the film into a wedge-shaped region and a stretched film region. 

Fig. 14 shows the similar case as in Fig. 12 but with a decrease in Weber number from 

We = 1 to 0.01 (at fixed Reynolds number). Since We = {plP6i)/cr = U^/ul, where Uc 

denotes the capillary velocity, the lower Weber number indicates that the pulling velocity 

is significantly smaller than the velocity at which the longer wavelength dilational capillary 

waves propagate along the film. Accordingly, the time scale for the exchange of information 

along the liquid film is significantly smaller than the time scale associated with the generation 

of film disturbances due to the accelerating film. Consequently, a distinct liquid wedge at 

the pulling end is no longer formed. As the film stretches over a longer period of time 

without rupture, the film thickness at rj = 0 continuously decreases at later times and its 

maximum value is reached at the pulling end. The overall film length at breakup is increased, 
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i.e. II = 4.36 with film rupture taking place at a significantly later time T^ = 35.75 than for 

the case shown in Figs. 12 and 13. 

Fig. 15 displays numerical results obtained for the case with Re = 100 and We = 100. 

In this case, the maximum pulling velocity is significantly larger than the capillary wave 

speed. Accordingly, the effects of film thinning by film stretching are not communicated 

fast enough towards the film center such that, at the point of film rupture, the center of 

the film remains essentially undisturbed with film thickness 6*{r} = 0,TJ) close to 1. Due to 

the significant increase in stretching/pulling velocity, the film breaks very early after only 

Tj = 0.79. However, due to the large value of U the film has already stretched significantly 

at the time of rupture, i.e. /J = 3.98. Note that this value is larger than the one predicted for 

the case with decreased Weber number, whereas the opposite is true for the observed break- 

up time Tj*. Fig. 15 illustrates that an increase in maximum pulling velocity also results 

in a narrower film wedge (both in the transformed and the original spatial coordinates), 

i.e. thinner thickness boundary-layer at the pulling end, and film breakup closer to the pulling 

end. It is also interesting to note that for the case shown in Fig. 15, a singular behavior in 

the axial velocity ait the point of film rupture is no longer observed (not illustrated). Notable 

differences between the results illustrated in Fig. 15 and the similar case with long-range 

molecular forces considered, only appeared for film thicknesses below 5* = 0.01. 

Fig. 16 illustrates a case for small Weber number and Reynolds number, i.e. We — 0.01 

and Re = 1. This can reflect a hundred-fold decrease in velocity from the case of Fig. 15. 

Comparison with Fig. 14 shows that break-up time and film length at rupture increase as 

the Reynolds number is decreased from 100 to 1 (i.e. i; = 16.8 at T; = 162.64). The break- 

up time and length are also much greater here than for the case of Fig. 15. A long thin 

liquid filament or band of "uniform" thickness is formed with a film wedge located at the 

pulling end. Filament pinching occurs at its transition into the film wedge. Furthermore, in 

comparison to the case shown in Fig. 12 and Fig. 13, the amplitude of the velocity singularity 

which is forming at the pinch-point is greatly reduced. 

The influence of a reduction in Reynolds number from Re = 100 to 1 for a larger Weber 
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number case, i.e. We = 100, can be observed by comparing Fig. 15 and Fig. 17. For the 

larger Re number case in Fig. 15, information is propagated into the film mainly due to 

capillary waves, however, since the pulling velocity in this case is significantly larger than 

the capillary wave velocity, the center of the film at r; = 0 remained virtually undisturbed 

by the pulling of its ends. On the other hand, for the same value of Weber number but 

smaller Reynolds number, propagation of information from the pulling end into the film 

is greatly determined by viscous diffusion. Consequently, the film thickness in Fig. 17 has 

a local maximum at the centerline whose value continuously decreases as time progresses. 

At the same time, film length at breakup and breakup time (i.e. II = 3.77 and r^* = 0.77) 

remain close to the values predicted for the larger Reynolds number case of Fig. 15. This 

result, and the observation that the thickness boundary layer in Fig. 17 at the pulling end is 

slightly smaller than that displayed in Fig. 15, shows that viscous diff'usion results in a more 

uniform film thickness in the stretched film region outside of the thickness boundary-layer, 

i.e. away from the film wedge at the pulling end. Also, whereas for the smaller Reynolds 

number case film thickness is more uniform away from the thickness boundary layer, film 

pinching in the vicinity of the Uquid wedge is more pronounced than for the corresponding 

larger Reynolds number case at the same time (e.g. r* = 0.7). In other words, the local 

minimum in film thickness at the transition from film wedge to the outer stretched-film 

region is more distinct in Fig. 17 than in Fig. 15. In fact, for the larger Reynolds number 

case film distortion might be characterized as 'film tearing' rather than 'film pinching.' 

Comparison of Fig. 17 with Fig. 16 also illustrates that for small Reynolds numbers, an 

increase in Weber number results in a decrease in the size of the film thickness boundary- 

layer. Note that such a layer was not observed for the case in Fig. 14 with smaller viscous 

diffusion in comparison to the case of Fig. 16. This indicates, of course, that viscous diffusion 

not only serves the propagation of information, but it also is effective in damping wave 

amplitudes (via viscous dissipation) and in delaying film rupture, the latter occuring at 

Tj* = 35.75 and i; = 4.36 in Fig. 14, whereas r^ = 16.80 and r^ = 162.64 for the case in 

Fig. 16. 
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Fig. 18 illustrates a case with Re = 1 and We = 1. Analogous to the similar case with 

larger Weber number shown in Fig. 17, a distinct maximum in the film thickness develops 

at the film center with its maximum value continuously decreasing. However, the stabilizing 

effect of surface tension prevents film rupture in the lower Weber number case so that 

film stretching progresses over a much longer time-period resulting in more significant film 

stretching before film rupture {i; = 8.63, r,* = 8.13). In this context, the results of Fig. 18 

for We = 1 resemble those of Fig. 16 for We = 0.01 (both for Re = 1), even though in the 

latter case the film stretches over a longer distance resulting in a nearly uniform very thin 

film region near the film center. 

Comparison of Figs. 12, 18 and 19 illustrates the effect of changes in Reynolds number at 

low Weber number (i.e. We = 1). As the Reynolds number is decreased from Re = 100 to 

1, capillary waves are damped by viscous action, film rupture is delayed and film stretching 

is enhanced. Fig. 19 shows that for a very viscous film (i.e. very small i?e-values), the film 

thickness essentially decreases uniformly over the entire film as film stretching progresses. 

Film rupture eventually occurs in the immediate vicinity of the pulling ends where 5* = 1 

is enforced. The prescribed observation has also been made for the case of a compressed 

highly viscous film (see below). It remains to be noted that, break-up length and time for 

the case shown in Fig. 19 (i.e., i; = 5.52 and r,* = 5.22) are not very different from those 

observed for the case shown in Fig. 18. 

Effect of Changes in C, orTp 

The various cases discussed in the previous section have been analyzed with respect to 

changes in thickness-to-length ratio of the film C as well as with respect to changes in the 

time interval T^ over which the films ends are accelerated from zero velocity to the maximum 

pull velocity U, in particular, C was decreased from 0.1 to 0.01 and Tp was increased from 1 

to 10, respectively. Note that, a smaller C value corresponds to a longer film assuming the 

film thickness is kept constant. 

Figs. 20 through 24 illustrate instantaneous film thickness distributions for the various 
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cases (characterized by We and Re values) near the time of film rupture. Solid lines represent 

results for the "base" cases discussed earlier, dashed and dot-dashed lines denote the results 

for the corresponding cases (i.e., with same We- and ile-values) but with decreased ^- 

value or increased Tp-value, respectively. Fig. 23 contains an additional result for the case of 

C = 0.025. Note that the results are plotted versus x/li so that for direct comparison between 

the C = 0.1 results (solid and dash-dotted lines) and the C, = 0.01 result (dashed lines), the 

latter has to be stretched by a factor of ten to give the dimensional length comparison, 

assuming that the film thickness is the same in all three cases. Also, the characteristic time 

used in the nondimensionalization is Tj-e/ = k/uc- This implies that, for direct comparison 

between the C = 0.01 and the C = 0.1 results in one particular figure, the time associated 

with the C = 0.01 result has to be multiplied by a factor of ten to yield the same dimensional 

time, again Eissuming the initial film thickness is the same in all 3 cases. 

The figures illustrate that, for a particular combination of We and Re, nondimensional 

film length, i.e. l/li at the point of rupture is significantly smaller for the C = 0.01 case. 

That is, the initially thinner sheet requires a smaller fractional increase in length in order 

to break. However, dimensional time until break-up and dimensional break-up length will 

be significantly larger for the lower C-value. Recall in this context, that Tre/ = k/uc- The 

prescribed observation is particularly obvious in Figs. 20 and 22 through 24. For C = 0.01 

with Re =100 and We = 1 or 100 (Figs. 20 and 22), the center region of the film remains 

essentially undisturbed throughout the simulation. However, for small Weber numbers (i.e. 

We=0.01 a.t Re = 1 or 100), capillary waves from one end of the film are able to reach the 

film center prior to film rupture resulting in a disturbed film center region. (See Figs. 21 

and 23.) The similar observation is made for smaller Reynolds numbers but larger Weber 

numbers (i.e. Re=l at We = 100). Here, the viscous forces cause the film thickness to 

decrease in the center region even for the smaller ^-value case. 

If the acceleration of the film ends is reduced by increasing Tp from 1 to 10, the films 

stretch further before rupture occurs. This is particularly obvious from Figs. 20, 22 and 24. 

As the films are stretched over a longer time interval (prior to rupture), the film thickness in 
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the film center region will be significantly smaller at the time of film rupture (in comparison 

to the similar cases but smaller T^ value). See Figs. 20, 22, 24. The prescribed observation 

is less pronounced in the low Weber number, low Reynolds number case, where the film 

stretches significantly even in the Tp = 1, C = 0.1 "base" case. Due to the delay in film 

rupture the maximum film thickness in the film center at the time of rupture will be smaller 

for larger Tp value. However, due to the decreased film acceleration in this case, the film 

thickness in the film center region at a given nondimensional time will be larger for smaller 

Tp values. See Fig. 21 in this context. 

Table 1 summarizes the various parameter configurations analyzed within the present 

study including predictions of break-up length /J, break-up time T^/C, and film thickness in 

the film center at the time of film rupture 5*{T^,r} = 0) for the various cases. Note that, 

■^6/C is proportional to the dimensional break-up time and 5*{T^, V = 0) indicates the extent 

to which the propagation of disturbances towards the center has proceeded at the time of 

film rupture. 

Film Compression 

In order to illustrate how the dynamics of a planar film bridge can relate to the dynamics of 

a free planar film, the present analysis was extended to include negative film end-velocities, 

effectively leading to film compression. Fig. 25a illustrates a film compression case with 

velocity boundary conditions according to Eq. (30) but with -U/2 instead of U/2. The 

Weber number and Reynolds numbers in this case were 1 and 100, respectively. A fluid 

blob (i.e. a liquid cylinder) forms at the compression end(s) with capillary waves proceeding 

the cylinder and propagating towards the film center. Figure 25b shows the predictions 

obtained for the similar case but Re = 1 instead of 100. Here, a liquid rim is still formed at 

the film ends. Due to increased viscous damping, however, no capillary waves proceed the 

rim. As the Reynolds number is further decreased, information from the film ends is rapidly 

propagated to the film center via viscous forces. Consequently, the film thickness increases 

more or less uniformly across the entire film except near the film ends due to the prescribed 
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boundary condition (5 * (r*) = 1. 

Figures 26a-c illustrate computational results presented by Brenner and Gueyffier'^ for a 

freely contracting film and for Weber numbers and Reynolds numbers comparable to those 

shown in Figs. 25a-c, respectively. The observations made in Ref. 17 for the freely contract- 

ing film are essentially the same as those described earlier for the compressed film bridge. 

Neglect of Intermolecular Force Term 

Figure 27 illustrates results for the same case as in Fig. 12 but with the effect on intermolec- 

ular forces (modelled via the potential $) neglected. Comparison between Figs. 12 and 27 

shows that omission of the destabilizing effect of long-range intermolecular forces can prevent 

film rupture and produce non-physical global flow features, such as the continuous shedding 

of smaller ligaments from the pulling end. The ligament shedding has not been observed for 

any of the other cases discussed in this work. However, it illustrates that the consideration 

of a continuum model alone for the analysis of film rupture can produce misleading results. 

IV. CONCLUDING REMARKS 

The dynamic stretching (and compression) of a thin viscous liquid film in a void has 

been analyzed by means of reduced-dimension or lubrication approach. The numerical im- 

plementation of the nonlinear governing equations has been validated for the linear limit by 

comparison with analytical linear results for a film bridge with harmonic modulations of the 

axial film-end velocities. Nonlinear solutions for the continuously stretching film have been 

presented for various Weber number and Reynolds number combinations, for two different 

initial film-thickness-to-film-length ratios and at two different acceleration conditions for the 

film ends. Consistent results are found from both the linear and nonlinear analyses. The 

importance of the film stretching rate in comparison to either the capillary wave velocity 

or the characteristic viscous velocity has been demonstrated. If the stretching rate is large, 

the distortion signals are slow in reaching large distances from the forced end; so distortion 
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is confined to a smaller portion of the sheet. For small stretching rates, the distortion is 

significant over a larger portion of the film. 

For films with an initial length-to-thickness ratio of 0(10) and with a time-scale for film- 

end acceleration (from zero to maximum pull velocity) comparable to the propagation time 

of capillary waves from film end through film center, various distinct film topologies were 

observed, depending on Weber number and Reynolds number. For cases with length-to- 

thickness ratio of O(IOO) information on the acceleration of the film ends does not reach the 

film center region. Here, evolution of film topology is similar for all the considered Weber 

number and Reynolds number combinations; with a more or less undisturbed film center 

region smoothly transitioning into a narrow liquid wedge at the pulling end. For cases with 

low film-end acceleration, film rupture is significantly delayed resulting (in all the considered 

cases) in a significantly stretched film prior to rupture with or without significant amounts 

of fluid remaining in the film center region. 

Nonlinear film distortion has also been investigated for the continuously compressed 

planar film bridge, illustrating the relevance of the film bridge analysis for the contracting 

and stretching of a" free planar film such as those found in the atomization process of liquid 

fuels in typical gas turbine combustors. 
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Tables 

Wt Rt c T^T 'b* rlK <5-(n,77 = 0) Figure No. 

1 100 0.1 2.42 19.2 1.25 12, 20 (solid) 

1 100 0.01 1.52 102 1 20 (dashed) 

1 100 0.1 6.45 104.4 0.44 20 (dash-dotted) 

100 100 0.1 3.98 7.9 0.98 15, 22 (soUd) 

100 100 0.01 2.04 53 1 22 (dashed) 

100 100 0.1 12.32 54.2 0.68 22 (dash-dotted) 

0.01 1 0.1 16.80 1626.4 0.01 16, 23 (solid) 

0.01 1 0.025 6.14 2074.4 0.35 23 (dot-dot-dashed) 

0.01 1 0.01 3.03 2080 1.14 23 (dashed) 

0.01 1 0.1 16.31 1628.1 0.02 23 (dash-dotted) 

0.01 100 0.1 4.36 357.5 0.03 14, 21 (solid) 

0.01 100 0.01 1.50 552 1.07 21 (dashed) 

0.01 100 0.1 10 4.11 373.8 0.08 21 (dash-dotted) 

100 1 0.1 3.77 7.7 0.49 17, 24 (solid) 

100 1 0.01 2.08 53 0.96 24 (dashed) 

100 1 0.1 10 7.65 44.7 0.22 24 (dash-dotted) 

1 0.1 8.63 81.3 0.29 18 
0.01 0.1 5.52 52.2 0.17 19 
100 0.01 5 0.83 176 1 26(a) 

1 0.01 5 0.70 215 1 26(b) 

0.01 0.01 5 0.56 247 1.65 26(c) 

Table 1: Summary of parameter survey including results for nondimensional values of break-up length ZJ, 
break-up time r^/C and film thicknes at the fihn center during film rupture 5''{T^,T] = 0). 
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Figure captions 

Figure 1: Schematic of investigated free stretching film configuration {h = 5). 

Figure 2: Solid: Linear analytical solution for Uo = 0.01, i?e = 100,/ = 0.1, L = 10. Dashed: 

Numerical solution for the same case. 

Figure 3: Solid: Linear analytical solution for UQ = 0.01, Re = 10,/ = 0.1,1 = 10.  Dashed: 

Numerical solution for the same case. 

Figure 4: Solid: Linear analytical solution for Uo = 0.01, Re = 1,/ = 0.1,L = 10.  Dashed: 

Numerical solution for the same case. 

Figure 5: Linear analytical solution for UQ = 0.01, Re = 0.2, / = 0.1, L = 10. 

Figure 6: Linear analytical solution for UQ = 0.01, Re = 10, / = 0.1, L = 100. 

Figure 7: Linear analytical solution for UQ - 0.01, Re — l,f = 0.1, L = 100. 

Figure 8: Linear analytical solution for UQ = 0.01, Re = 0.2, / = 0.1, L = 100. 

Figure 9: Linear analytical solution for UQ = 0.01, Re = l,f = 0.1,1 = 250. 

Figure 10: Linear analytical solution for UQ = 0.01, Re = l,f = 0.5, L = 10. 

Figure 11: Linear analytical solution for UQ = 0.01, Re = 0.2, / = 0.5, L = 10. 

Figure 12: Film thickness 5* as a function of time r* and normalized spatial coordinate rj for 

We = 1 and Re = 100 [i; = 2.42, T^ = 1.92]. 

Figure 13: Axial film velocity u* as a function of time r* and normalized spatial coordinate 77 for 

We = 1 and Re = 100 [i; = 2.42, T; = 1.92]. 

Figure 14: Film thickness 5* as a function of time r' and normalized spatial coordinate 77 for 

We = 0.01 and Re = 100 [i; = 4.36, T; = 35.75]. 
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Figure 15: Film thickness 5* as a. function of time r* and normalized spatial coordinate 77 for 

We = 100 and Re = 100 [i; = 3.98, T; = 0.79]. 

Figure 16: Film thickness 5* as a function of time r* and normalized spatial coordinate T] for 

We = 0.01 and Re = 1 [i; = 16.80, T; = 162.64]. 

Figure 17: Film thickness 6* as a function of time r* and normalized spatial coordinate r] for 

We = 100 and Re = 1 [i; = 3.77, r^ = 0.77]. 

Figure 18: Film thickness 5* as a. function of time r* and normalized spatial coordinate r) for 

We = 1 and iJe = 1 [i; = 8.63, TJ* = 8.13].     . 

Figure 19: Film thickness 6* as a. function of time r* and normalized spatial coordinate 77 for 

We = 1 and Re = 0.01 [i; = 5.52, r^ = 5.22]. 

Figure 20: Film thickness S* at various times r* plotted versus normalized spatial coordinate x/k 

for We = 1 and Re = 100. Solid: 5^/^^=0.1, Tp = 1, dashed: Si/li=0.01, Tp = 1, 

dash-dotted: 5i/li=Q.l, Tp = 10. 

Figure 21: Film thickness 5* at various times r* plotted versus normalized spatial coordinate x/U 

for We = 0.01 and /2e = 100. Solid: Si/li=0.l, Tp = 1, dashed: 6i/li=0m, Tp = 1, 

dash-dotted: 5i/li=0.1, Tp = 10, 

Figure 22: Film thickness 5* at various times r* plotted versus normalized spatial coordinate x/li 

for We = 100 and Re = 100. Solid: 6i/li=0.1, Tp = 1, dashed: 5,//i=0.01, Tp = 1, 

dash-dotted: (5,7/^=0.1, Tp = 10. 

Figure 23: Film thickness 5* at various times r* plotted versus normalized spatial coordinate x/U 

for We = 0.01 and Re = I. Solid: (^,//,=0.1, Tp = 1, dashed: S,/l,=O.0l, Tp = 1, 

dash-dotted: ^.//i=0.1, Tp = 10, dash-dot-dotted: 6Jl,=0.025, Tp = l. 

Figure 24: Film thickness 6* at various times r* plotted versus normalized spatial coordinate x/l, 

for We = 100 and Re = 1.   Solid:  ()V'.=0.1, Tp = 1, dashed:  d.//,=0.01. Tp = 1, 
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dash-dotted: 6i/li=0.1, Tp = 10, 

Figure 25: Film compression for We = 1 and Re = 100 (a), 1 (b) and 0.01 (c). 

Figure 26: Film compression for We = l,Re = 1. Results presented in Ref. 17 for contracting free 

planar liquid film and Weber and Reynolds numbers comparable to those presented in 

Fig. 25. 

Figure 27: Film thickness 5* as a function of time r* and normalized spatial coordinate T] for We = 

1 and Re = 100 and without the consideration of intermolecular forces, i.e. A* = 0. 
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